==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 02-OCT-00 1FYJ . COMPND 2 MOLECULE: MULTIFUNCTIONAL AMINOACYL-TRNA SYNTHETASE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR E.-J.JEONG,G.-S.HWANG,K.H.KIM,M.J.KIM,S.KIM,K.-S.KIM . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4496.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 78.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 38 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D >> 0 0 167 0, 0.0 4,-1.0 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 124.1 17.5 -0.8 -5.1 2 2 A S H 3> + 0 0 79 1,-0.2 4,-1.6 2,-0.2 0, 0.0 0.797 360.0 67.9 -65.4 -25.8 15.3 -0.6 -2.0 3 3 A L H 3> S+ 0 0 62 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.907 92.9 57.7 -62.4 -40.0 13.8 2.6 -3.4 4 4 A V H <> S+ 0 0 88 -3,-0.6 4,-1.6 1,-0.2 3,-0.2 0.961 107.0 46.8 -57.0 -49.9 12.1 0.8 -6.3 5 5 A L H X S+ 0 0 62 -4,-1.0 4,-1.7 1,-0.2 5,-0.3 0.876 106.6 61.8 -60.0 -33.3 10.2 -1.5 -3.9 6 6 A Y H X S+ 0 0 34 -4,-1.6 4,-2.1 1,-0.2 -1,-0.2 0.945 103.1 48.1 -58.1 -48.6 9.3 1.7 -1.9 7 7 A N H X S+ 0 0 70 -4,-1.9 4,-2.7 -3,-0.2 -1,-0.2 0.884 106.3 58.0 -61.8 -40.0 7.4 3.1 -4.9 8 8 A R H X S+ 0 0 137 -4,-1.6 4,-1.5 2,-0.2 5,-0.2 0.964 112.5 37.5 -60.0 -51.7 5.4 -0.1 -5.6 9 9 A V H X S+ 0 0 2 -4,-1.7 4,-2.4 1,-0.2 -1,-0.2 0.925 116.7 54.2 -66.9 -40.0 3.8 -0.3 -2.1 10 10 A A H X S+ 0 0 4 -4,-2.1 4,-1.7 -5,-0.3 -1,-0.2 0.898 103.9 55.8 -59.9 -40.9 3.4 3.5 -2.0 11 11 A V H X S+ 0 0 79 -4,-2.7 4,-1.4 -5,-0.2 -1,-0.2 0.960 112.4 40.2 -60.3 -50.0 1.5 3.6 -5.4 12 12 A Q H >X S+ 0 0 36 -4,-1.5 4,-2.0 1,-0.2 3,-0.6 0.966 107.8 62.8 -62.9 -51.8 -1.2 1.1 -4.2 13 13 A G H 3X S+ 0 0 13 -4,-2.4 4,-1.6 1,-0.3 -1,-0.2 0.887 106.6 45.2 -39.1 -51.6 -1.4 2.7 -0.7 14 14 A D H 3X S+ 0 0 80 -4,-1.7 4,-2.5 1,-0.2 -1,-0.3 0.883 106.8 58.9 -64.5 -39.0 -2.6 6.0 -2.3 15 15 A V H S+ 0 0 35 -4,-2.3 5,-1.8 2,-0.2 3,-0.3 0.914 110.1 50.3 -60.0 -42.1 -11.3 5.2 -3.7 20 20 A K H ><5S+ 0 0 111 -4,-1.9 3,-2.3 1,-0.3 -1,-0.2 0.931 106.5 55.3 -64.0 -40.0 -12.5 5.5 -0.1 21 21 A A H 3<5S+ 0 0 80 -4,-2.0 -1,-0.3 1,-0.3 -2,-0.2 0.820 102.6 58.5 -61.1 -26.5 -12.6 9.3 -0.6 22 22 A K T 3<5S- 0 0 136 -4,-1.2 -1,-0.3 -3,-0.3 -2,-0.2 0.346 113.0-121.9 -85.1 8.9 -14.8 8.6 -3.6 23 23 A K T < 5 + 0 0 189 -3,-2.3 -3,-0.2 1,-0.1 -2,-0.1 0.760 53.1 170.7 58.6 21.5 -17.4 6.8 -1.3 24 24 A A < - 0 0 22 -5,-1.8 -1,-0.1 1,-0.1 5,-0.0 -0.074 41.0 -82.8 -57.7 166.5 -16.8 3.7 -3.5 25 25 A P >> - 0 0 69 0, 0.0 4,-1.4 0, 0.0 3,-1.0 -0.236 41.9-104.1 -68.8 161.3 -18.3 0.4 -2.4 26 26 A K H 3> S+ 0 0 154 1,-0.2 4,-3.3 2,-0.2 5,-0.4 0.825 118.5 68.3 -56.8 -29.5 -16.4 -1.8 0.1 27 27 A E H 3> S+ 0 0 150 1,-0.2 4,-1.9 2,-0.2 5,-0.3 0.905 100.9 45.8 -59.7 -39.9 -15.4 -4.1 -2.8 28 28 A D H <> S+ 0 0 72 -3,-1.0 4,-1.9 2,-0.2 5,-0.2 0.936 118.2 41.5 -70.1 -44.6 -13.2 -1.3 -4.2 29 29 A V H X S+ 0 0 17 -4,-1.4 4,-2.9 2,-0.2 5,-0.3 0.952 117.2 47.1 -68.6 -48.6 -11.6 -0.4 -0.9 30 30 A D H X S+ 0 0 91 -4,-3.3 4,-2.4 2,-0.2 5,-0.2 0.950 115.4 44.7 -60.0 -49.5 -11.2 -4.0 0.3 31 31 A A H X S+ 0 0 62 -4,-1.9 4,-1.9 -5,-0.4 -1,-0.2 0.952 117.2 45.0 -61.4 -47.8 -9.7 -5.3 -3.0 32 32 A A H X S+ 0 0 10 -4,-1.9 4,-2.0 -5,-0.3 -16,-0.2 0.912 113.3 49.4 -64.8 -41.1 -7.3 -2.3 -3.3 33 33 A V H X S+ 0 0 51 -4,-2.9 4,-2.3 -5,-0.2 -1,-0.2 0.920 108.5 54.7 -66.1 -37.1 -6.3 -2.5 0.4 34 34 A K H X S+ 0 0 145 -4,-2.4 4,-1.8 -5,-0.3 -1,-0.2 0.912 105.4 54.2 -60.2 -40.1 -5.6 -6.2 -0.1 35 35 A Q H X S+ 0 0 98 -4,-1.9 4,-1.5 1,-0.2 3,-0.2 0.961 108.7 46.3 -60.4 -50.7 -3.3 -5.3 -3.0 36 36 A L H X S+ 0 0 23 -4,-2.0 4,-2.9 1,-0.2 5,-0.2 0.902 107.3 59.5 -60.2 -38.4 -1.2 -2.9 -0.9 37 37 A L H X S+ 0 0 80 -4,-2.3 4,-2.5 1,-0.2 -1,-0.2 0.925 101.6 53.5 -58.0 -41.3 -1.0 -5.6 1.9 38 38 A S H X S+ 0 0 67 -4,-1.8 4,-1.4 -3,-0.2 -1,-0.2 0.919 110.5 47.1 -60.3 -40.0 0.6 -8.0 -0.6 39 39 A L H X S+ 0 0 16 -4,-1.5 4,-1.6 1,-0.2 -2,-0.2 0.937 110.8 51.3 -67.8 -43.2 3.3 -5.3 -1.3 40 40 A K H X S+ 0 0 63 -4,-2.9 4,-2.0 1,-0.2 10,-0.2 0.896 104.3 58.8 -60.0 -39.2 3.8 -4.6 2.4 41 41 A A H X S+ 0 0 48 -4,-2.5 4,-1.3 -5,-0.2 -1,-0.2 0.921 102.9 51.7 -59.6 -42.2 4.3 -8.4 3.0 42 42 A E H X S+ 0 0 76 -4,-1.4 4,-0.8 1,-0.2 3,-0.5 0.930 107.9 52.1 -62.1 -41.4 7.2 -8.5 0.6 43 43 A Y H >X S+ 0 0 22 -4,-1.6 4,-0.9 1,-0.2 6,-0.9 0.914 105.2 56.7 -60.1 -40.5 8.9 -5.5 2.5 44 44 A K H 3X S+ 0 0 141 -4,-2.0 4,-2.4 4,-0.2 -1,-0.2 0.836 93.3 69.8 -60.0 -34.2 8.4 -7.5 5.7 45 45 A E H 3< S+ 0 0 151 -4,-1.3 -1,-0.2 -3,-0.5 -2,-0.2 0.886 95.1 53.6 -56.1 -40.0 10.4 -10.4 4.3 46 46 A K H << S- 0 0 115 -4,-0.8 -1,-0.2 -3,-0.8 -2,-0.2 0.987 144.1 -37.0 -62.2 -57.8 13.7 -8.5 4.4 47 47 A T H < S- 0 0 114 -4,-0.9 -2,-0.2 3,-0.0 -3,-0.2 0.152 88.7 -84.6-156.2 25.2 13.6 -7.4 8.1 48 48 A G S < S+ 0 0 45 -4,-2.4 -4,-0.2 -5,-0.4 -3,-0.1 0.884 80.6 140.2 71.0 36.3 10.0 -6.6 9.0 49 49 A Q + 0 0 79 -6,-0.9 -5,-0.2 -9,-0.1 -6,-0.1 0.684 31.1 176.2 -85.2 -15.8 10.2 -3.0 7.7 50 50 A E - 0 0 93 -10,-0.2 2,-1.0 -9,-0.1 -9,-0.1 0.199 56.2 -22.0 38.1-166.4 6.6 -3.2 6.1 51 51 A Y S S- 0 0 55 -42,-0.1 -1,-0.1 -14,-0.0 4,-0.1 -0.562 73.2-143.8 -71.8 105.1 5.2 0.0 4.5 52 52 A K - 0 0 87 -2,-1.0 3,-0.3 1,-0.1 -2,-0.1 -0.482 19.3-123.5 -69.1 136.9 7.3 2.8 6.1 53 53 A P S S+ 0 0 97 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 -0.015 87.4 61.7 -71.3-177.5 5.1 5.9 6.6 54 54 A G S S- 0 0 77 2,-0.0 -2,-0.1 3,-0.0 0, 0.0 0.682 106.3-103.9 72.7 16.3 5.8 9.4 5.2 55 55 A N - 0 0 71 -3,-0.3 -48,-0.1 -4,-0.1 -49,-0.0 0.121 65.4 -36.8 54.3 177.7 5.6 8.0 1.6 56 56 A P 0 0 34 0, 0.0 -53,-0.0 0, 0.0 -2,-0.0 -0.369 360.0 360.0 -70.0 150.0 8.8 7.3 -0.4 57 57 A P 0 0 147 0, 0.0 -54,-0.0 0, 0.0 -3,-0.0 0.888 360.0 360.0 -72.0 360.0 11.7 9.8 0.0