==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 13-OCT-00 1G1P . COMPND 2 MOLECULE: CONOTOXIN EVIA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.VOLPON,H.LAMTHANH,J.BARBIER,N.GILLES,J.MOLGO,A.MENEZ, . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2705.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 18.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 211 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 147.9 4.7 12.4 0.9 2 2 A D - 0 0 130 17,-0.1 2,-0.3 2,-0.0 17,-0.0 -0.805 360.0-129.2 178.9-171.0 2.1 10.7 -1.2 3 3 A a - 0 0 52 -2,-0.3 2,-0.3 15,-0.0 17,-0.2 -0.866 30.9 -91.9-149.0 173.5 0.3 7.4 -0.4 4 4 A I B -a 20 0A 23 15,-2.8 17,-2.3 -2,-0.3 18,-0.3 -0.670 49.8-103.0 -92.1 148.2 -0.2 4.3 -2.6 5 5 A K > - 0 0 159 -2,-0.3 3,-2.4 15,-0.2 24,-0.4 -0.410 36.4-100.0 -74.6 141.6 -3.4 4.3 -4.6 6 6 A X T 3 S+ 0 0 58 1,-0.3 24,-0.1 -2,-0.1 -1,-0.1 -0.542 115.1 12.9 -64.3 126.3 -6.3 2.1 -3.5 7 7 A Y T 3 S+ 0 0 170 22,-1.5 -1,-0.3 1,-0.4 2,-0.2 0.590 106.5 117.9 72.1 20.5 -6.1 -1.0 -5.7 8 8 A G S < S- 0 0 16 -3,-2.4 21,-3.0 22,-0.1 -1,-0.4 -0.570 79.0 -81.4-100.3 174.0 -2.6 0.0 -6.8 9 9 A F B +C 28 0B 160 19,-0.2 19,-0.3 -2,-0.2 -4,-0.2 -0.640 45.9 167.4 -85.1 131.8 0.5 -2.1 -6.0 10 10 A b + 0 0 3 17,-3.3 2,-2.5 -2,-0.3 18,-0.2 0.200 39.9 118.2-125.6 9.4 2.0 -1.8 -2.5 11 11 A S + 0 0 81 16,-1.1 -2,-0.1 2,-0.1 7,-0.1 -0.468 39.4 156.5 -77.3 68.5 4.2 -4.8 -2.7 12 12 A L - 0 0 73 -2,-2.5 2,-2.1 2,-0.1 5,-0.2 -0.888 44.5-140.9 -98.2 122.0 7.3 -2.6 -2.3 13 13 A P S S+ 0 0 132 0, 0.0 2,-0.4 0, 0.0 -2,-0.1 -0.499 70.0 110.0 -79.6 68.8 10.3 -4.5 -0.9 14 14 A I S S- 0 0 101 -2,-2.1 3,-0.4 0, 0.0 2,-0.4 -0.939 75.6-116.6-137.2 141.9 11.2 -1.5 1.3 15 15 A L S S+ 0 0 153 -2,-0.4 3,-0.1 1,-0.2 0, 0.0 -0.748 95.3 16.6 -92.3 136.3 10.7 -2.0 5.0 16 16 A K S S+ 0 0 194 -2,-0.4 2,-0.3 1,-0.3 -1,-0.2 0.965 109.2 93.9 66.1 59.1 8.1 0.2 6.6 17 17 A N + 0 0 69 -3,-0.4 -1,-0.3 -5,-0.2 3,-0.1 -0.789 21.2 104.2-159.3-172.9 6.5 1.2 3.3 18 18 A G + 0 0 13 -2,-0.3 2,-1.3 1,-0.2 -8,-0.1 0.775 55.1 178.7 86.8 37.2 3.6 -0.2 1.4 19 19 A L - 0 0 107 -3,-0.1 -15,-2.8 10,-0.0 2,-0.3 -0.603 5.5-174.5 -89.2 91.2 1.7 2.8 2.6 20 20 A c B > -aB 4 23A 14 -2,-1.3 3,-1.2 3,-0.6 -15,-0.2 -0.611 29.1-137.8 -83.8 144.1 -1.8 2.6 1.2 21 21 A a T 3 S+ 0 0 87 -17,-2.3 -1,-0.1 1,-0.3 -16,-0.1 0.850 110.8 50.2 -67.0 -33.2 -4.3 5.4 1.6 22 22 A S T 3 S- 0 0 36 -18,-0.3 2,-1.5 8,-0.2 10,-0.3 0.304 113.1-129.5 -90.2 9.7 -6.9 2.8 2.3 23 23 A G B < S+B 20 0A 53 -3,-1.2 -3,-0.6 8,-0.1 8,-0.2 -0.442 70.9 86.6 94.8 -69.3 -4.6 1.2 4.8 24 24 A A - 0 0 39 -2,-1.5 6,-3.0 6,-0.3 2,-0.4 -0.415 52.2-160.6 -89.9 153.6 -4.3 -2.5 4.1 25 25 A b B +D 29 0C 59 4,-0.3 4,-0.2 -2,-0.1 -16,-0.1 -0.991 23.6 163.4-130.8 133.9 -1.9 -4.1 1.6 26 26 A V S S- 0 0 113 2,-3.1 2,-0.8 -2,-0.4 3,-0.1 -0.295 88.8 -69.7-137.3 37.3 -2.4 -7.6 0.2 27 27 A G S S+ 0 0 28 1,-0.1 -17,-3.3 -9,-0.1 -16,-1.1 -0.447 137.4 53.8 99.0 -55.4 0.2 -6.9 -2.6 28 28 A V B S-C 9 0B 57 -2,-0.8 -2,-3.1 -19,-0.3 2,-0.3 -0.722 111.5 -94.3 -94.9 156.5 -2.4 -4.6 -4.0 29 29 A c B +D 25 0C 0 -21,-3.0 -22,-1.5 -24,-0.4 -4,-0.3 -0.613 54.5 171.7 -73.6 129.7 -3.7 -1.9 -1.7 30 30 A A - 0 0 21 -6,-3.0 -6,-0.3 -2,-0.3 2,-0.3 -0.284 21.9-131.7-121.5-156.8 -6.9 -3.0 -0.1 31 31 A D 0 0 84 -8,-0.2 -8,-0.1 -2,-0.1 -9,-0.1 -0.846 360.0 360.0-153.7 169.6 -9.1 -1.7 2.7 32 32 A L 0 0 209 -10,-0.3 -8,-0.1 -2,-0.3 -2,-0.0 -0.802 360.0 360.0-161.0 360.0 -10.7 -3.1 5.8