==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 16-OCT-00 1G1Z . COMPND 2 MOLECULE: CONOTOXIN EVIA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.VOLPON,H.LAMTHANH,F.LE GALL,A.MENEZ,J.M.LANCELIN . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2529.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 21.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 212 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 153.9 5.5 12.3 -1.6 2 2 A D - 0 0 142 17,-0.1 17,-0.3 0, 0.0 2,-0.2 -0.829 360.0 -86.8-172.7-170.7 1.8 11.5 -1.9 3 3 A a - 0 0 42 -2,-0.3 2,-0.3 15,-0.1 17,-0.2 -0.617 41.1-106.8-105.7 172.4 -0.1 8.3 -0.9 4 4 A I B -a 20 0A 48 15,-2.2 17,-2.8 -2,-0.2 18,-0.3 -0.755 40.7-104.7-103.2 149.6 -0.6 5.2 -3.1 5 5 A K > - 0 0 159 -2,-0.3 3,-2.2 4,-0.2 24,-0.4 -0.478 35.3-100.1 -82.7 141.6 -4.0 4.6 -4.6 6 6 A X T 3 S+ 0 0 63 1,-0.3 24,-0.2 -2,-0.2 -1,-0.1 -0.471 112.3 11.0 -65.9 129.2 -6.4 2.0 -3.3 7 7 A Y T 3 S+ 0 0 168 22,-1.7 -1,-0.3 1,-0.4 2,-0.2 0.632 107.5 113.4 66.5 23.2 -6.1 -1.1 -5.6 8 8 A G S < S- 0 0 19 -3,-2.2 21,-3.0 22,-0.1 -1,-0.4 -0.636 78.9 -90.0-103.3 172.4 -3.1 0.5 -7.2 9 9 A F B +C 28 0B 168 19,-0.3 19,-0.3 -2,-0.2 -4,-0.2 -0.663 44.9 168.0 -90.0 140.8 0.3 -1.2 -6.7 10 10 A b - 0 0 22 17,-3.3 2,-0.2 -2,-0.3 -1,-0.1 0.186 36.6-112.1-111.2-123.3 2.6 -0.3 -3.8 11 11 A S - 0 0 61 7,-0.3 16,-1.2 17,-0.1 -1,-0.2 -0.777 30.9 -89.4-154.0-160.2 5.6 -2.5 -3.2 12 12 A L S S+ 0 0 102 -2,-0.2 2,-0.2 14,-0.1 5,-0.0 -0.833 82.2 77.2-149.0 165.0 6.8 -5.0 -0.6 13 13 A P S S- 0 0 103 0, 0.0 2,-0.7 0, 0.0 3,-0.2 0.624 70.9-159.1 -64.0 144.5 8.3 -5.7 1.9 14 14 A I + 0 0 77 -2,-0.2 3,-0.2 1,-0.1 -2,-0.1 -0.908 59.3 95.5-107.5 108.6 5.4 -4.3 3.8 15 15 A L S S- 0 0 165 1,-1.3 2,-0.4 -2,-0.7 -1,-0.1 0.059 114.6 -2.8-137.5 -63.1 6.1 -3.2 7.3 16 16 A K S S+ 0 0 159 -3,-0.2 -1,-1.3 3,-0.0 2,-0.3 -0.871 95.9 141.7-112.4 148.0 6.7 0.4 6.4 17 17 A N - 0 0 24 -2,-0.4 2,-0.3 -3,-0.2 -3,-0.1 -0.826 66.1 -42.3-162.0-166.7 6.4 0.7 2.7 18 18 A G S S- 0 0 30 -2,-0.3 2,-0.3 1,-0.1 -7,-0.3 -0.592 75.9-114.8 -74.5 131.5 4.9 3.4 0.5 19 19 A L - 0 0 96 -2,-0.3 -15,-2.2 -17,-0.3 2,-0.2 -0.530 22.0-143.7 -88.3 133.5 1.8 4.3 2.3 20 20 A c B > -aB 4 23A 8 3,-0.7 3,-1.3 -2,-0.3 -15,-0.2 -0.652 18.0-127.3 -90.4 150.9 -1.6 3.6 0.7 21 21 A a T 3 S+ 0 0 90 -17,-2.8 -16,-0.1 1,-0.3 -1,-0.1 0.816 115.1 48.9 -68.4 -28.8 -4.4 6.1 1.3 22 22 A S T 3 S- 0 0 46 -18,-0.3 2,-1.2 2,-0.2 10,-0.3 0.358 115.1-124.6 -90.3 4.8 -6.7 3.3 2.5 23 23 A G B < S+B 20 0A 53 -3,-1.3 -3,-0.7 8,-0.1 2,-0.2 -0.371 76.8 96.6 97.3 -58.4 -3.8 2.2 4.7 24 24 A A E +D 30 0C 17 -2,-1.2 6,-2.4 6,-0.7 2,-0.4 -0.483 42.5 175.5 -83.5 143.1 -3.2 -1.4 3.7 25 25 A b E +D 29 0C 8 4,-0.3 4,-0.3 -2,-0.2 -16,-0.1 -0.944 15.6 156.8-138.0 140.2 -0.5 -2.3 1.2 26 26 A V S S- 0 0 85 2,-2.5 2,-1.8 -2,-0.4 -14,-0.1 -0.359 90.5 -59.0-160.3 60.5 0.3 -5.9 0.4 27 27 A G S S+ 0 0 16 -16,-1.2 -17,-3.3 -18,-0.0 2,-0.3 -0.401 141.3 47.6 88.8 -58.9 1.9 -5.4 -3.0 28 28 A V B S-C 9 0B 48 -2,-1.8 -2,-2.5 -19,-0.3 2,-0.3 -0.709 100.8-110.8 -97.9 158.5 -1.4 -3.9 -4.1 29 29 A c E +D 25 0C 0 -21,-3.0 -22,-1.7 -24,-0.4 -4,-0.3 -0.727 54.0 145.1 -85.7 144.0 -3.0 -1.3 -1.9 30 30 A A E -D 24 0C 9 -6,-2.4 -6,-0.7 -2,-0.3 2,-0.3 -0.621 46.4-103.4-150.4-153.9 -6.2 -2.5 -0.2 31 31 A D 0 0 97 -2,-0.2 -8,-0.1 -8,-0.2 -9,-0.0 -0.864 360.0 360.0-138.1 161.8 -8.0 -2.0 3.0 32 32 A L 0 0 192 -2,-0.3 -8,-0.1 -10,-0.3 -2,-0.0 -0.834 360.0 360.0-153.6 360.0 -8.0 -4.5 5.8