==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOKINE 17-OCT-00 1G26 . COMPND 2 MOLECULE: GRANULIN A; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.TOLKATCHEV,A.NG,W.VRANKEN,F.NI . 31 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2822.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 48.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 32.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 127 0, 0.0 2,-1.1 0, 0.0 8,-0.0 0.000 360.0 360.0 360.0 149.1 -6.4 7.9 -0.6 2 2 A V E -A 10 0A 68 8,-1.8 2,-1.3 12,-0.1 8,-1.2 -0.663 360.0-149.6 -99.1 82.6 -3.9 6.9 2.1 3 3 A H E - 0 0 142 -2,-1.1 6,-0.2 6,-0.2 3,-0.1 -0.232 13.1-172.4 -51.6 89.8 -0.5 8.0 0.6 4 4 A a E - 0 0 38 -2,-1.3 2,-0.3 4,-0.1 -1,-0.2 0.762 66.1 -40.7 -60.1 -19.5 1.6 5.2 2.3 5 5 A D E > S-A 8 0A 81 3,-1.2 3,-0.5 -3,-0.1 -1,-0.1 -0.978 72.4 -73.1 177.9-170.8 4.6 7.1 0.9 6 6 A M T 3 S+ 0 0 179 -2,-0.3 3,-0.1 1,-0.2 -3,-0.0 0.284 125.5 51.2 -91.8 14.1 5.9 9.0 -2.1 7 7 A E T 3 S+ 0 0 150 1,-0.3 2,-0.3 16,-0.0 -1,-0.2 0.334 118.2 17.6-127.8 3.0 6.3 5.7 -4.1 8 8 A V E < -A 5 0A 33 -3,-0.5 -3,-1.2 2,-0.0 2,-0.4 -0.973 56.2-159.4-168.5 154.4 2.9 4.2 -3.6 9 9 A I E - 0 0 95 -2,-0.3 -6,-0.2 -6,-0.2 17,-0.0 -0.957 9.3-177.9-146.4 125.5 -0.7 5.1 -2.6 10 10 A b E -A 2 0A 2 -8,-1.2 -8,-1.8 -2,-0.4 6,-0.1 -0.980 25.3-123.4-128.0 137.2 -3.5 2.9 -1.3 11 11 A P > - 0 0 50 0, 0.0 3,-4.1 0, 0.0 -2,-0.0 -0.358 39.2 -97.8 -73.1 152.9 -7.1 3.8 -0.5 12 12 A D T 3 S+ 0 0 139 1,-0.3 -2,-0.0 -2,-0.1 0, 0.0 0.847 124.3 64.6 -37.2 -44.5 -8.4 3.0 3.0 13 13 A G T 3 S+ 0 0 38 15,-0.1 16,-1.0 2,-0.0 2,-0.3 0.561 101.4 63.7 -62.6 -3.4 -10.0 -0.2 1.6 14 14 A Y E < S-B 28 0B 113 -3,-4.1 2,-0.4 14,-0.2 -4,-0.1 -0.903 75.3-135.8-124.3 154.3 -6.5 -1.4 0.9 15 15 A T E -B 27 0B 52 12,-2.6 12,-2.5 -2,-0.3 2,-0.3 -0.868 18.4-134.7-107.3 137.6 -3.5 -2.4 3.1 16 16 A a E -B 26 0B 39 -2,-0.4 2,-0.3 10,-0.2 10,-0.2 -0.685 23.8-175.1 -90.8 142.4 0.1 -1.3 2.2 17 17 A C E -B 25 0B 78 8,-2.8 8,-3.0 -2,-0.3 2,-0.5 -0.978 20.3-132.1-136.0 149.2 2.9 -3.8 2.4 18 18 A R E -B 24 0B 168 -2,-0.3 6,-0.3 6,-0.2 4,-0.1 -0.861 23.9-130.8-103.6 129.4 6.7 -3.5 2.0 19 19 A L > - 0 0 92 4,-1.1 3,-1.0 -2,-0.5 4,-0.3 -0.203 27.9-105.3 -69.8 168.6 8.5 -6.0 -0.2 20 20 A P T 3 S+ 0 0 131 0, 0.0 -1,-0.1 0, 0.0 4,-0.0 0.430 118.4 57.6 -74.7 2.2 11.6 -7.8 1.0 21 21 A S T 3 S- 0 0 110 0, 0.0 3,-0.1 0, 0.0 -2,-0.1 -0.040 129.0 -87.1-122.5 33.3 13.7 -5.6 -1.3 22 22 A G S < S+ 0 0 60 -3,-1.0 2,-0.1 1,-0.2 -4,-0.0 0.847 92.8 127.2 68.5 30.2 12.7 -2.1 0.0 23 23 A A - 0 0 35 -4,-0.3 -4,-1.1 2,-0.0 2,-0.3 -0.440 52.4-127.6-108.3-174.1 9.7 -2.1 -2.3 24 24 A W E +B 18 0B 81 -6,-0.3 2,-0.3 -2,-0.1 -6,-0.2 -0.987 20.6 180.0-137.8 147.9 5.9 -1.5 -1.7 25 25 A G E -B 17 0B 25 -8,-3.0 -8,-2.8 -2,-0.3 2,-0.4 -0.979 18.5-136.2-143.7 156.3 2.8 -3.5 -2.6 26 26 A b E +B 16 0B 57 -2,-0.3 -10,-0.2 -10,-0.2 -2,-0.0 -0.942 19.9 177.9-118.7 135.6 -1.0 -3.0 -2.1 27 27 A C E -B 15 0B 75 -12,-2.5 -12,-2.6 -2,-0.4 -2,-0.0 -0.974 20.3-138.1-139.6 125.5 -3.4 -5.7 -1.0 28 28 A P E -B 14 0B 59 0, 0.0 -14,-0.2 0, 0.0 -15,-0.1 -0.248 9.9-138.8 -73.3 164.8 -7.1 -5.4 -0.4 29 29 A F + 0 0 159 -16,-1.0 2,-0.9 1,-0.0 -15,-0.1 -0.223 58.4 124.0-119.8 45.0 -8.8 -7.1 2.6 30 30 A T 0 0 125 -17,-0.1 -1,-0.0 0, 0.0 -17,-0.0 -0.713 360.0 360.0-106.8 85.3 -12.0 -8.3 1.0 31 31 A Q 0 0 221 -2,-0.9 -2,-0.0 0, 0.0 0, 0.0 -0.885 360.0 360.0-112.7 360.0 -12.2 -12.1 1.7