==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 19-OCT-00 1G2H . COMPND 2 MOLECULE: TRANSCRIPTIONAL REGULATORY PROTEIN TYRR HOMOLOG; . SOURCE 2 ORGANISM_SCIENTIFIC: HAEMOPHILUS INFLUENZAE; . AUTHOR Y.WANG,S.ZHAO,R.L.SOMERVILLE,O.JARDETZKY . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4236.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 14.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 34.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 175 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -79.3 15.4 4.9 -1.9 2 2 A A - 0 0 52 2,-0.1 15,-0.0 19,-0.0 0, 0.0 -0.404 360.0 -96.5-120.9-160.3 13.3 4.9 1.3 3 3 A V S S+ 0 0 106 -2,-0.1 2,-0.2 2,-0.0 14,-0.0 -0.256 90.8 70.8-117.5 46.6 13.3 3.0 4.6 4 4 A I + 0 0 30 13,-0.0 2,-0.3 7,-0.0 5,-0.2 -0.724 48.3 176.2-141.9-167.5 10.7 0.3 3.9 5 5 A S > - 0 0 54 -2,-0.2 3,-1.0 1,-0.0 4,-0.3 -0.955 52.7 -80.2 172.9 172.8 10.0 -2.8 1.7 6 6 A L T 3 S+ 0 0 37 -2,-0.3 -1,-0.0 1,-0.3 3,-0.0 0.669 132.3 43.4 -70.4 -11.1 7.5 -5.6 1.1 7 7 A D T 3 S+ 0 0 140 1,-0.1 -1,-0.3 2,-0.1 3,-0.1 0.419 121.5 38.5-110.8 -0.7 8.8 -7.4 4.2 8 8 A E S X S+ 0 0 109 -3,-1.0 3,-0.6 1,-0.1 4,-0.3 0.061 82.6 101.2-134.3 24.2 8.9 -4.2 6.4 9 9 A F T 3 + 0 0 5 -4,-0.3 5,-0.3 1,-0.2 3,-0.2 0.445 62.4 81.2 -91.0 3.0 5.8 -2.3 5.2 10 10 A E T 3 S+ 0 0 133 1,-0.2 -1,-0.2 3,-0.1 33,-0.1 0.262 79.4 72.7 -89.6 15.3 3.8 -3.4 8.3 11 11 A N S < S+ 0 0 82 -3,-0.6 2,-0.4 1,-0.1 -1,-0.2 0.863 90.3 52.2 -95.2 -45.4 5.4 -0.6 10.3 12 12 A K S S- 0 0 46 -4,-0.3 2,-2.0 -3,-0.2 -1,-0.1 -0.749 80.5-128.0 -97.2 141.5 3.7 2.5 8.9 13 13 A T - 0 0 86 -2,-0.4 31,-0.1 1,-0.2 33,-0.1 -0.408 64.2 -80.0 -81.8 65.6 -0.1 2.9 8.7 14 14 A L S S+ 0 0 3 -2,-2.0 -1,-0.2 29,-0.4 30,-0.0 0.905 124.5 64.9 38.8 60.7 -0.2 3.8 5.0 15 15 A D S S+ 0 0 98 3,-0.0 -1,-0.2 0, 0.0 3,-0.1 0.270 71.4 77.3-171.9 -36.8 0.7 7.5 5.6 16 16 A E S S+ 0 0 137 1,-0.2 -2,-0.0 0, 0.0 -4,-0.0 0.640 123.8 7.9 -65.5 -10.9 4.3 7.8 7.1 17 17 A I S S+ 0 0 35 -15,-0.0 -1,-0.2 3,-0.0 4,-0.1 0.304 100.2 115.0-152.4 10.2 5.6 7.3 3.5 18 18 A I + 0 0 33 1,-0.1 2,-0.5 3,-0.1 3,-0.2 -0.206 40.2 75.2 -81.7 177.0 2.7 7.2 1.0 19 19 A G S > S+ 0 0 35 1,-0.2 4,-0.6 2,-0.0 -1,-0.1 -0.857 111.1 1.0 124.8 -97.6 2.1 9.8 -1.8 20 20 A F H >> S+ 0 0 198 -2,-0.5 3,-0.9 2,-0.2 4,-0.7 0.912 132.0 52.4 -92.2 -54.7 4.5 9.3 -4.7 21 21 A Y H 3> S+ 0 0 38 1,-0.2 4,-0.9 -3,-0.2 3,-0.3 0.773 100.7 74.4 -51.9 -18.8 6.5 6.3 -3.6 22 22 A E H >>>S+ 0 0 1 2,-0.2 4,-3.3 1,-0.2 3,-2.2 0.976 78.3 65.6 -60.9 -55.9 3.0 5.0 -3.2 23 23 A A H > S+ 0 0 49 -6,-0.4 4,-3.9 2,-0.2 3,-0.8 0.919 108.3 52.0 -88.5 -51.7 2.8 -3.1 -5.5 29 29 A F H 3X S+ 0 0 0 -4,-4.7 4,-2.2 1,-0.3 -2,-0.2 0.905 113.6 48.3 -50.5 -38.2 0.9 -3.9 -2.2 30 30 A Y H 3< S+ 0 0 60 -4,-2.5 -1,-0.3 -5,-0.3 -2,-0.2 0.809 114.0 45.9 -73.6 -26.2 -2.0 -4.7 -4.5 31 31 A A H <4 S+ 0 0 80 -3,-0.8 -2,-0.2 -4,-0.3 -1,-0.2 0.856 127.3 28.0 -83.7 -35.0 0.3 -6.8 -6.7 32 32 A E H < S+ 0 0 106 -4,-3.9 -3,-0.2 1,-0.3 -2,-0.2 0.915 125.9 45.5 -89.5 -53.7 1.9 -8.6 -3.7 33 33 A Y S < S- 0 0 7 -4,-2.2 -1,-0.3 -5,-0.4 6,-0.2 -0.770 83.3-158.2 -94.0 100.5 -1.0 -8.4 -1.2 34 34 A P + 0 0 86 0, 0.0 5,-0.3 0, 0.0 4,-0.2 -0.247 63.2 33.2 -71.7 163.4 -4.1 -9.4 -3.2 35 35 A S S >> S- 0 0 61 -5,-0.2 4,-2.9 3,-0.2 3,-0.6 0.879 83.5-121.1 55.1 103.3 -7.6 -8.4 -1.9 36 36 A T H 3> S+ 0 0 9 1,-0.2 4,-3.2 2,-0.2 5,-0.2 0.839 113.3 62.4 -42.9 -33.6 -7.3 -4.9 -0.3 37 37 A R H 3> S+ 0 0 152 1,-0.2 4,-0.7 2,-0.2 -1,-0.2 0.982 112.2 32.3 -59.3 -56.6 -8.7 -6.7 2.8 38 38 A K H <> S+ 0 0 110 -3,-0.6 4,-0.8 -4,-0.2 -1,-0.2 0.792 117.6 59.3 -72.1 -23.5 -5.7 -9.1 3.1 39 39 A L H >X S+ 0 0 0 -4,-2.9 4,-1.8 -5,-0.3 3,-0.8 0.928 102.3 51.2 -70.2 -42.2 -3.5 -6.4 1.7 40 40 A A H 3<>S+ 0 0 2 -4,-3.2 5,-1.4 -5,-0.3 4,-0.3 0.739 98.3 69.9 -66.6 -20.0 -4.4 -4.0 4.6 41 41 A Q H 3<5S+ 0 0 144 -4,-0.7 -1,-0.2 -5,-0.2 -2,-0.2 0.879 106.8 35.5 -67.3 -35.2 -3.5 -6.9 7.0 42 42 A R H <<5S+ 0 0 142 -3,-0.8 -2,-0.2 -4,-0.8 -1,-0.2 0.844 118.0 50.6 -86.8 -35.0 0.2 -6.5 6.2 43 43 A L T <5S- 0 0 1 -4,-1.8 -29,-0.4 -33,-0.1 -1,-0.2 0.394 109.8-123.9 -83.1 7.0 0.2 -2.7 5.8 44 44 A G T 5 + 0 0 35 -4,-0.3 2,-0.3 -3,-0.2 -3,-0.2 0.961 63.9 123.8 49.8 80.8 -1.5 -2.4 9.2 45 45 A V S - 0 0 93 -2,-0.3 3,-1.2 1,-0.2 2,-1.0 -0.113 51.7-135.1 -89.8 40.0 -8.4 -0.4 8.0 47 47 A H T 3> S+ 0 0 67 -2,-0.3 4,-2.6 1,-0.3 3,-0.5 -0.128 100.0 56.1 43.9 -87.1 -8.5 -2.0 4.6 48 48 A T H 3> S+ 0 0 98 -2,-1.0 4,-2.9 1,-0.3 -1,-0.3 0.880 108.1 51.8 -38.5 -42.7 -11.2 0.3 3.1 49 49 A A H <> S+ 0 0 45 -3,-1.2 4,-2.3 1,-0.2 -1,-0.3 0.968 109.3 48.1 -61.2 -49.6 -8.9 3.2 4.1 50 50 A I H > S+ 0 0 0 -3,-0.5 4,-1.8 2,-0.2 5,-0.3 0.945 114.9 46.7 -56.1 -47.3 -5.9 1.5 2.3 51 51 A A H X S+ 0 0 17 -4,-2.6 4,-2.9 1,-0.2 5,-0.2 0.988 109.3 51.1 -60.3 -61.5 -8.1 1.0 -0.8 52 52 A N H X S+ 0 0 103 -4,-2.9 4,-1.6 2,-0.2 5,-0.2 0.902 107.4 57.1 -44.3 -46.0 -9.6 4.5 -1.0 53 53 A K H < S+ 0 0 76 -4,-2.3 3,-0.4 -5,-0.3 4,-0.3 0.976 123.2 22.2 -52.3 -62.8 -6.0 5.9 -0.8 54 54 A L H X>S+ 0 0 0 -4,-1.8 5,-1.7 1,-0.2 4,-0.8 0.547 107.6 83.1 -85.3 -1.5 -4.7 4.0 -3.8 55 55 A K H ><5S+ 0 0 118 -4,-2.9 3,-0.9 -5,-0.3 4,-0.2 0.952 97.2 42.0 -64.1 -43.2 -8.3 3.6 -5.2 56 56 A Q T 3<5S+ 0 0 136 -4,-1.6 -1,-0.2 -3,-0.4 -2,-0.2 0.669 102.5 70.8 -76.4 -13.4 -8.0 7.2 -6.6 57 57 A Y T 345S- 0 0 91 -4,-0.3 -1,-0.2 -5,-0.2 -2,-0.2 0.724 126.1 -93.8 -74.9 -17.9 -4.3 6.4 -7.7 58 58 A G T <<5S+ 0 0 67 -3,-0.9 -3,-0.2 -4,-0.8 -2,-0.1 0.609 98.8 84.5 113.4 21.7 -5.8 4.0 -10.4 59 59 A I < + 0 0 28 -5,-1.7 2,-2.4 -4,-0.2 -1,-0.1 -0.170 47.6 73.9-125.1-140.3 -5.7 0.7 -8.5 60 60 A G 0 0 11 -34,-0.1 -24,-0.2 -2,-0.1 -25,-0.1 -0.349 360.0 360.0 63.3 -81.5 -8.0 -1.0 -6.0 61 61 A K 0 0 250 -2,-2.4 -3,-0.0 -6,-0.2 0, 0.0 -0.755 360.0 360.0-116.9 360.0 -10.5 -2.0 -8.7