==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 24-FEB-06 2G6F . COMPND 2 MOLECULE: RHO GUANINE NUCLEOTIDE EXCHANGE FACTOR 7; . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR A.HOELZ . 59 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4048.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 61.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 23 39.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 X G 0 0 120 0, 0.0 2,-0.1 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-167.4 28.9 -6.0 -2.3 2 6 X P - 0 0 130 0, 0.0 2,-0.8 0, 0.0 0, 0.0 0.360 360.0-151.7 -70.2 130.7 26.0 -5.9 -3.0 3 7 X L - 0 0 126 1,-0.1 3,-0.1 -2,-0.1 27,-0.0 -0.678 21.5-175.1 -74.2 108.5 26.8 -2.3 -4.2 4 8 X G - 0 0 45 -2,-0.8 2,-0.2 1,-0.2 -1,-0.1 0.476 44.1 -9.6 -78.4-138.3 23.4 -0.5 -3.7 5 9 X S - 0 0 61 26,-0.5 26,-2.3 25,-0.1 2,-0.4 -0.418 60.2-161.6 -69.0 133.9 22.5 3.0 -4.6 6 10 X V E -A 30 0A 29 53,-0.5 53,-2.2 24,-0.2 2,-0.3 -0.947 9.4-177.0-116.2 136.1 25.3 5.3 -5.7 7 11 X V E -AB 29 58A 5 22,-2.7 22,-2.6 -2,-0.4 2,-0.4 -0.878 18.7-133.5-126.6 161.2 24.9 9.1 -5.8 8 12 X R E -AB 28 57A 84 49,-2.9 49,-1.9 -2,-0.3 20,-0.2 -0.959 26.3-114.2-116.2 135.7 27.1 11.9 -6.8 9 13 X A E - B 0 56A 2 18,-3.0 17,-2.7 -2,-0.4 47,-0.3 -0.480 19.3-166.0 -65.5 132.1 27.7 15.0 -4.8 10 14 X K S S+ 0 0 86 45,-3.3 2,-0.3 -2,-0.2 46,-0.2 0.656 74.1 14.2 -87.2 -22.4 26.3 18.2 -6.4 11 15 X F S S- 0 0 97 44,-0.8 -1,-0.1 13,-0.1 2,-0.1 -0.943 88.3 -89.4-145.5 161.4 28.3 20.5 -4.0 12 16 X N - 0 0 108 -2,-0.3 2,-0.4 12,-0.2 12,-0.2 -0.458 40.5-163.9 -66.1 151.3 31.2 20.4 -1.6 13 17 X F B -F 23 0B 23 10,-2.8 10,-2.3 -2,-0.1 2,-0.5 -0.980 8.8-156.4-142.9 130.2 30.2 19.7 2.0 14 18 X Q - 0 0 150 -2,-0.4 8,-0.2 8,-0.2 7,-0.1 -0.914 27.1-118.6-104.5 126.0 32.3 20.2 5.2 15 19 X Q - 0 0 77 -2,-0.5 7,-0.1 1,-0.1 3,-0.1 -0.326 21.4-169.9 -62.4 141.5 31.4 18.1 8.2 16 20 X T S S+ 0 0 111 1,-0.2 2,-0.3 5,-0.1 -1,-0.1 0.459 71.9 14.3-108.8 -9.5 30.3 20.0 11.3 17 21 X N S > S- 0 0 59 4,-0.1 3,-1.7 3,-0.0 -1,-0.2 -0.954 89.7 -89.7-155.7 174.1 30.5 17.1 13.7 18 22 X E T 3 S+ 0 0 160 -2,-0.3 -3,-0.0 1,-0.3 0, 0.0 0.635 118.7 58.7 -65.6 -19.9 31.8 13.5 13.9 19 23 X D T 3 S+ 0 0 109 30,-0.1 31,-3.0 2,-0.1 2,-0.3 0.642 93.6 83.4 -82.8 -14.4 28.7 12.0 12.5 20 24 X E B < S-c 50 0A 17 -3,-1.7 31,-0.2 29,-0.3 -5,-0.1 -0.645 72.2-129.6 -97.8 144.9 28.9 13.9 9.2 21 25 X L - 0 0 1 29,-2.6 2,-0.4 -2,-0.3 -5,-0.1 -0.433 10.8-144.4 -72.2 158.4 30.9 13.2 6.1 22 26 X S + 0 0 34 -8,-0.2 2,-0.3 -2,-0.1 -8,-0.2 -0.990 34.4 154.4-115.5 138.3 33.1 15.7 4.3 23 27 X F B -F 13 0B 7 -10,-2.3 -10,-2.8 -2,-0.4 2,-0.3 -0.973 34.8-118.4-154.6 167.6 33.2 15.5 0.5 24 28 X S > - 0 0 63 -2,-0.3 3,-2.4 -12,-0.2 -15,-0.3 -0.805 44.1 -81.7-111.4 153.5 33.8 17.4 -2.6 25 29 X K T 3 S+ 0 0 145 -2,-0.3 -15,-0.2 1,-0.3 -13,-0.1 -0.233 117.0 21.8 -48.0 132.2 31.5 18.2 -5.6 26 30 X G T 3 S+ 0 0 24 -17,-2.7 -1,-0.3 1,-0.3 -16,-0.1 0.262 89.5 135.1 88.7 -9.6 31.4 15.3 -8.0 27 31 X D < - 0 0 47 -3,-2.4 -18,-3.0 -16,-0.1 -1,-0.3 -0.415 54.6-120.8 -70.0 149.5 32.5 12.7 -5.5 28 32 X V E -A 8 0A 66 -20,-0.2 2,-0.4 -3,-0.1 17,-0.4 -0.669 25.2-168.5 -89.3 141.6 30.6 9.4 -5.4 29 33 X I E -A 7 0A 0 -22,-2.6 -22,-2.7 -2,-0.3 2,-0.7 -0.999 18.1-140.5-130.0 133.4 28.8 8.2 -2.2 30 34 X H E -AD 6 43A 47 13,-2.5 13,-2.4 -2,-0.4 2,-0.6 -0.864 24.9-141.4 -91.6 111.1 27.4 4.7 -1.7 31 35 X V E + D 0 42A 17 -26,-2.3 -26,-0.5 -2,-0.7 11,-0.3 -0.678 32.1 164.6 -84.1 119.4 24.1 5.3 0.2 32 36 X T E + 0 0 71 9,-1.8 2,-0.3 -2,-0.6 10,-0.2 0.540 62.3 28.2-113.5 -12.4 23.5 2.7 2.8 33 37 X R E - D 0 41A 122 8,-1.8 8,-3.0 2,-0.0 2,-0.4 -0.965 57.2-166.9-152.4 135.8 20.7 4.2 5.0 34 38 X V E + D 0 40A 82 -2,-0.3 2,-0.3 6,-0.2 6,-0.2 -0.964 13.7 171.6-120.1 136.2 17.9 6.6 4.3 35 39 X E > - 0 0 86 4,-0.6 3,-0.6 -2,-0.4 4,-0.2 -0.957 38.3 -96.7-136.2 157.4 15.9 8.4 7.0 36 40 X E T 3 S+ 0 0 198 -2,-0.3 3,-0.1 1,-0.2 0, 0.0 -0.381 95.5 63.1 -66.6 152.3 13.3 11.1 7.1 37 41 X G T 3 S- 0 0 74 1,-0.1 -1,-0.2 -2,-0.1 3,-0.1 0.360 114.7 -80.7 113.9 -3.6 14.6 14.6 7.8 38 42 X G S < S+ 0 0 31 -3,-0.6 15,-2.5 1,-0.2 16,-0.5 0.469 99.1 104.2 93.4 3.8 17.0 15.3 4.9 39 43 X W E - E 0 52A 95 13,-0.3 -4,-0.6 -4,-0.2 2,-0.3 -0.984 43.3-179.9-120.0 128.4 20.1 13.4 6.2 40 44 X W E -DE 34 51A 68 11,-2.5 11,-2.5 -2,-0.4 2,-0.4 -0.757 21.6-126.0-117.1 166.1 21.1 10.1 4.7 41 45 X E E +DE 33 50A 45 -8,-3.0 -8,-1.8 -2,-0.3 -9,-1.8 -0.904 39.0 142.1-115.0 142.0 24.1 7.8 5.6 42 46 X G E -DE 31 49A 0 7,-2.6 7,-2.4 -2,-0.4 2,-0.5 -0.976 46.1 -93.0-164.8 178.9 26.7 6.5 3.2 43 47 X T E +DE 30 48A 45 -13,-2.4 -13,-2.5 -2,-0.3 2,-0.4 -0.896 36.4 171.5-109.8 130.6 30.2 5.5 2.5 44 48 X H E > S- E 0 47A 13 3,-2.9 3,-2.1 -2,-0.5 -15,-0.1 -0.997 70.1 -12.9-140.6 127.9 32.6 8.0 0.9 45 49 X N T 3 S- 0 0 139 -2,-0.4 3,-0.1 -17,-0.4 -1,-0.1 0.872 130.7 -50.6 43.8 45.1 36.4 7.6 0.4 46 50 X G T 3 S+ 0 0 78 1,-0.2 2,-0.4 0, 0.0 -1,-0.3 0.530 119.0 102.9 77.4 8.1 36.3 4.6 2.8 47 51 X R E < - E 0 44A 86 -3,-2.1 -3,-2.9 2,-0.0 2,-0.4 -0.957 60.0-141.5-124.5 142.5 34.4 6.3 5.6 48 52 X T E + E 0 43A 73 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.836 40.6 124.2-102.5 139.8 30.8 6.1 6.6 49 53 X G E - E 0 42A 3 -7,-2.4 -7,-2.6 -2,-0.4 -29,-0.3 -0.980 53.3 -76.4-175.5 179.7 28.8 9.1 7.8 50 54 X W E +cE 20 41A 51 -31,-3.0 -29,-2.6 -2,-0.3 -9,-0.2 -0.618 40.6 170.8 -98.6 151.2 25.7 11.3 7.3 51 55 X F E - E 0 40A 0 -11,-2.5 -11,-2.5 -2,-0.2 2,-0.4 -0.977 42.3 -84.1-153.7 159.3 25.2 13.9 4.7 52 56 X P E > - E 0 39A 15 0, 0.0 3,-2.0 0, 0.0 -13,-0.3 -0.558 30.2-146.7 -72.3 125.6 22.4 16.2 3.3 53 57 X S G > S+ 0 0 16 -15,-2.5 3,-1.5 -2,-0.4 -14,-0.1 0.835 98.0 61.4 -62.0 -31.0 20.3 14.3 0.8 54 58 X N G 3 S+ 0 0 135 -16,-0.5 -1,-0.3 1,-0.3 -15,-0.1 0.565 92.2 68.3 -73.3 -4.9 19.7 17.4 -1.2 55 59 X Y G < S+ 0 0 83 -3,-2.0 -45,-3.3 -45,-0.1 -44,-0.8 0.407 100.5 54.1 -89.0 2.6 23.5 17.7 -1.8 56 60 X V E < -B 9 0A 15 -3,-1.5 2,-0.3 -47,-0.3 -47,-0.2 -0.869 59.9-156.5-133.9 163.5 23.5 14.6 -4.0 57 61 X R E -B 8 0A 127 -49,-1.9 -49,-2.9 -2,-0.3 2,-0.2 -0.994 32.4-106.5-137.5 144.9 21.8 13.1 -7.1 58 62 X E E B 7 0A 140 -2,-0.3 -51,-0.3 -51,-0.2 -53,-0.0 -0.456 360.0 360.0 -73.7 140.7 21.5 9.4 -8.1 59 63 X I 0 0 107 -53,-2.2 -53,-0.5 -2,-0.2 -1,-0.0 -0.709 360.0 360.0-124.1 360.0 23.7 8.1 -10.9