==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 06-MAR-06 2G9L . COMPND 2 MOLECULE: GAEGURIN-4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.-W.CHI,K.-H.HAN . 37 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3339.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 45.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G >> 0 0 87 0, 0.0 4,-1.5 0, 0.0 3,-1.3 0.000 360.0 360.0 360.0-174.2 65.1 55.8 14.1 2 2 A I H 3> + 0 0 112 1,-0.3 4,-1.9 2,-0.2 5,-0.3 0.838 360.0 57.9 -57.2 -35.5 64.4 56.6 10.5 3 3 A L H 34 S+ 0 0 134 1,-0.2 4,-0.4 2,-0.2 -1,-0.3 0.674 110.0 43.3 -72.5 -18.3 66.3 53.4 9.5 4 4 A D H <> S+ 0 0 113 -3,-1.3 4,-2.1 2,-0.1 -1,-0.2 0.684 108.9 61.5 -90.1 -26.8 63.8 51.4 11.6 5 5 A T H X S+ 0 0 67 -4,-1.5 4,-1.6 2,-0.2 5,-0.2 0.969 107.2 39.1 -68.8 -56.9 60.9 53.4 10.3 6 6 A L H X S+ 0 0 104 -4,-1.9 4,-2.6 1,-0.2 -1,-0.2 0.852 115.4 56.1 -60.0 -36.5 61.1 52.5 6.6 7 7 A K H > S+ 0 0 104 -4,-0.4 4,-3.3 -5,-0.3 -1,-0.2 0.886 103.1 55.3 -62.6 -42.0 62.0 49.0 7.7 8 8 A Q H < S+ 0 0 100 -4,-2.1 -2,-0.2 2,-0.2 -1,-0.2 0.958 114.6 37.1 -56.2 -57.7 58.8 48.7 9.7 9 9 A F H >X S+ 0 0 126 -4,-1.6 4,-3.6 1,-0.2 3,-0.9 0.868 115.5 54.8 -65.2 -38.6 56.5 49.6 6.8 10 10 A A H 3< S+ 0 0 56 -4,-2.6 2,-1.1 1,-0.3 -2,-0.2 0.921 104.7 54.5 -60.3 -43.4 58.8 47.6 4.4 11 11 A K T 3< S+ 0 0 168 -4,-3.3 -1,-0.3 1,-0.2 -2,-0.1 -0.272 116.6 39.4 -81.3 47.6 58.3 44.7 6.7 12 12 A G T <> S+ 0 0 29 -2,-1.1 4,-1.8 -3,-0.9 -2,-0.2 0.196 107.2 56.5-166.1 -34.6 54.6 45.2 6.2 13 13 A V T < S+ 0 0 107 -4,-3.6 -2,-0.1 2,-0.2 -3,-0.1 -0.365 115.5 47.1 -87.6 46.9 54.5 46.1 2.6 14 14 A G T > S+ 0 0 26 -5,-0.1 4,-2.2 -2,-0.1 -1,-0.2 0.217 106.1 52.8-154.1 -30.3 56.1 42.7 2.6 15 15 A K H > S+ 0 0 144 2,-0.2 4,-2.7 1,-0.2 -2,-0.2 0.845 108.0 53.3 -74.8 -39.2 53.7 41.0 5.0 16 16 A D H X S+ 0 0 104 -4,-1.8 4,-0.8 2,-0.2 -1,-0.2 0.713 113.2 44.4 -63.4 -24.0 50.9 42.2 2.6 17 17 A L H > S+ 0 0 95 2,-0.2 4,-3.5 3,-0.2 -2,-0.2 0.838 113.5 47.1 -90.0 -42.3 53.0 40.5 -0.1 18 18 A V H X S+ 0 0 82 -4,-2.2 4,-1.9 2,-0.2 -2,-0.2 0.833 115.0 49.2 -63.2 -31.6 53.6 37.4 2.0 19 19 A K H < S+ 0 0 140 -4,-2.7 -2,-0.2 2,-0.2 -1,-0.2 0.847 111.5 48.1 -71.7 -36.2 49.8 37.7 2.6 20 20 A G H >< S+ 0 0 33 -4,-0.8 3,-0.9 1,-0.2 4,-0.3 0.877 114.6 44.6 -72.0 -40.7 49.3 38.0 -1.2 21 21 A A H 3< S+ 0 0 59 -4,-3.5 3,-0.4 1,-0.2 4,-0.3 0.863 113.5 52.9 -64.3 -37.6 51.5 35.0 -1.7 22 22 A A T 3< S+ 0 0 64 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 -0.146 87.0 96.8 -90.1 36.5 49.6 33.4 1.1 23 23 A Q S < S- 0 0 117 -3,-0.9 -1,-0.2 -2,-0.2 -2,-0.1 0.923 103.1 -15.4 -90.0 -56.8 46.3 34.1 -0.6 24 24 A G S S- 0 0 36 -3,-0.4 2,-0.2 1,-0.3 -2,-0.1 0.986 74.6-161.0 -81.7 -72.1 45.2 31.0 -2.5 25 25 A V S >> S+ 0 0 72 -4,-0.3 4,-3.5 -5,-0.1 3,-0.6 -0.732 75.2 9.7 -86.4 -53.1 47.8 29.6 -2.4 26 26 A L H 3> S+ 0 0 141 1,-0.3 4,-2.2 2,-0.2 5,-0.5 0.797 131.3 54.7 -56.8 -33.4 47.7 27.0 -5.2 27 27 A S H 3> S+ 0 0 73 3,-0.2 4,-1.3 2,-0.2 -1,-0.3 0.883 117.0 35.7 -67.4 -40.3 44.4 28.5 -6.5 28 28 A T H <> S+ 0 0 8 -3,-0.6 4,-0.6 2,-0.2 -2,-0.2 0.935 123.2 42.3 -77.6 -51.9 46.0 31.9 -6.8 29 29 A V H < S+ 0 0 77 -4,-3.5 3,-0.4 2,-0.2 -3,-0.2 0.932 123.7 38.1 -62.6 -49.1 49.5 30.8 -7.9 30 30 A S H < S+ 0 0 91 -4,-2.2 -3,-0.2 -5,-0.3 -1,-0.2 0.928 117.8 50.6 -66.4 -45.9 48.1 28.1 -10.3 31 31 A a H ><>S+ 0 0 27 -4,-1.3 2,-2.5 -5,-0.5 5,-1.0 0.620 85.9 100.7 -60.3 -15.6 45.3 30.5 -11.2 32 32 A K T 3<5 + 0 0 92 -4,-0.6 -1,-0.2 -3,-0.4 -4,-0.1 -0.270 33.0 127.6 -80.4 57.0 48.0 33.1 -11.8 33 33 A L T 3 5S- 0 0 150 -2,-2.5 -1,-0.2 1,-0.1 -2,-0.1 0.968 106.8 -14.9 -67.3 -57.1 48.1 32.7 -15.6 34 34 A A T < 5S- 0 0 84 -3,-0.5 -2,-0.1 0, 0.0 -1,-0.1 -0.266 113.8 -82.6-136.1 43.1 47.7 36.5 -15.9 35 35 A K T 5S+ 0 0 122 -7,-0.1 -3,-0.2 -6,-0.1 -6,-0.1 0.949 70.4 159.8 48.6 61.7 46.7 37.0 -12.3 36 36 A T < 0 0 105 -5,-1.0 -4,-0.1 -8,-0.2 -1,-0.1 0.262 360.0 360.0 -89.5 10.3 43.0 36.2 -12.8 37 37 A a 0 0 90 -9,-0.2 -13,-0.0 -8,-0.0 -9,-0.0 -0.913 360.0 360.0-133.8 360.0 42.9 35.6 -9.0