==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ALBUMIN-BINDING PROTEIN 30-DEC-96 1GAB . COMPND 2 MOLECULE: PROTEIN PAB; . SOURCE 2 ORGANISM_SCIENTIFIC: FINEGOLDIA MAGNA ATCC 29328; . AUTHOR M.U.JOHANSSON,M.DE CHATEAU,M.WIKSTROM,S.FORSEN,T.DRAKENBERG, . 53 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4178.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 67.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 169 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 92.4 -1.3 24.4 -4.1 2 2 A I > + 0 0 128 1,-0.1 3,-1.8 2,-0.1 4,-0.3 -0.199 360.0 135.7-137.1 46.3 -1.4 20.6 -4.1 3 3 A D G > + 0 0 126 1,-0.3 3,-1.0 2,-0.2 4,-0.4 0.835 63.0 79.7 -64.7 -26.5 1.7 19.4 -2.3 4 4 A Q G > S+ 0 0 146 1,-0.2 3,-1.6 2,-0.2 -1,-0.3 0.794 73.5 83.9 -50.7 -23.9 -0.6 16.9 -0.5 5 5 A W G < S+ 0 0 126 -3,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.941 72.6 67.5 -44.5 -62.9 -0.2 14.9 -3.8 6 6 A L G < S- 0 0 108 -3,-1.0 2,-0.4 -4,-0.3 -1,-0.3 0.800 81.6-179.7 -30.5 -38.5 3.1 13.3 -2.8 7 7 A L < + 0 0 18 -3,-1.6 -1,-0.2 -4,-0.4 26,-0.1 -0.530 25.1 154.8 69.9-122.8 1.0 11.5 -0.2 8 8 A K + 0 0 127 -2,-0.4 -1,-0.2 25,-0.3 25,-0.1 0.896 56.1 87.2 66.4 36.1 3.2 9.2 1.9 9 9 A N S > S+ 0 0 55 24,-0.1 4,-1.4 -3,-0.1 3,-0.5 0.596 84.3 39.2-131.3 -49.2 0.8 9.3 4.8 10 10 A A H > S+ 0 0 6 1,-0.2 4,-1.6 2,-0.2 5,-0.5 0.680 100.9 77.2 -80.4 -15.4 -1.9 6.6 4.4 11 11 A K H > S+ 0 0 28 3,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.867 106.4 31.0 -63.4 -32.6 0.7 4.1 3.1 12 12 A E H > S+ 0 0 116 -3,-0.5 4,-2.0 2,-0.2 -2,-0.2 0.879 119.4 50.5 -92.4 -44.1 2.0 3.6 6.7 13 13 A D H < S+ 0 0 130 -4,-1.4 -2,-0.2 1,-0.2 -3,-0.2 0.747 122.3 37.0 -65.9 -18.7 -1.2 4.1 8.7 14 14 A A H >X S+ 0 0 6 -4,-1.6 4,-1.7 -5,-0.2 3,-1.6 0.831 114.1 51.6 -99.0 -43.8 -2.8 1.6 6.3 15 15 A I H 3X S+ 0 0 32 -4,-1.1 4,-2.1 -5,-0.5 5,-0.2 0.828 101.1 65.6 -62.8 -29.0 0.0 -0.8 5.8 16 16 A A H 3< S+ 0 0 64 -4,-2.0 -1,-0.3 1,-0.2 -2,-0.1 0.702 114.2 30.4 -68.0 -15.6 0.3 -1.1 9.6 17 17 A E H <> S+ 0 0 145 -3,-1.6 4,-0.5 -5,-0.1 -2,-0.2 0.549 118.5 53.9-117.0 -14.4 -3.1 -2.7 9.6 18 18 A L H >X S+ 0 0 28 -4,-1.7 4,-0.8 2,-0.2 3,-0.6 0.819 92.6 69.1 -90.2 -33.0 -3.1 -4.5 6.2 19 19 A K H 3< S+ 0 0 124 -4,-2.1 3,-0.2 1,-0.3 -1,-0.2 0.781 102.3 50.9 -56.8 -19.5 0.1 -6.4 6.8 20 20 A K H 34 S+ 0 0 174 -5,-0.2 -1,-0.3 1,-0.2 -2,-0.2 0.814 91.4 72.9 -87.0 -31.2 -2.0 -8.3 9.3 21 21 A A H << S- 0 0 78 -3,-0.6 -1,-0.2 -4,-0.5 -2,-0.2 0.768 116.5-110.5 -54.7 -20.2 -4.8 -9.0 6.9 22 22 A G S < S+ 0 0 44 -4,-0.8 2,-0.4 1,-0.3 -1,-0.2 -0.145 80.8 127.3 116.1 -39.2 -2.4 -11.5 5.3 23 23 A I + 0 0 32 -5,-0.3 -1,-0.3 1,-0.2 -2,-0.1 -0.317 21.5 159.8 -54.0 107.9 -1.7 -9.6 2.1 24 24 A T + 0 0 114 -2,-0.4 -1,-0.2 -3,-0.1 -5,-0.1 0.303 24.3 129.2-115.2 7.5 2.1 -9.5 2.1 25 25 A S > - 0 0 47 1,-0.1 4,-0.8 2,-0.0 5,-0.1 -0.234 51.8-147.9 -59.9 153.0 2.7 -8.9 -1.6 26 26 A D H > S+ 0 0 112 2,-0.2 4,-1.7 3,-0.1 5,-0.3 0.548 88.6 73.8-100.5 -9.1 5.0 -6.0 -2.4 27 27 A F H > S+ 0 0 132 2,-0.2 4,-0.5 3,-0.2 -1,-0.1 0.791 106.8 35.1 -74.8 -24.4 3.2 -5.1 -5.7 28 28 A Y H > S+ 0 0 21 2,-0.1 4,-0.8 3,-0.1 -2,-0.2 0.850 117.9 49.8 -95.0 -42.4 0.3 -3.6 -3.7 29 29 A F H >< S+ 0 0 30 -4,-0.8 3,-0.7 1,-0.2 4,-0.4 0.944 114.3 45.3 -62.8 -45.9 2.2 -2.2 -0.7 30 30 A N H >X S+ 0 0 101 -4,-1.7 3,-1.4 1,-0.2 4,-0.7 0.918 112.1 51.5 -65.8 -39.5 4.7 -0.4 -3.0 31 31 A A H 3X S+ 0 0 24 -4,-0.5 4,-0.8 -5,-0.3 -1,-0.2 0.653 90.9 80.7 -71.6 -10.7 1.9 0.9 -5.2 32 32 A I H << S+ 0 0 0 -4,-0.8 -1,-0.3 -3,-0.7 -24,-0.2 0.799 91.1 51.2 -65.9 -24.4 0.2 2.2 -2.1 33 33 A N H <4 S+ 0 0 48 -3,-1.4 -25,-0.3 -4,-0.4 -1,-0.2 0.877 97.1 64.2 -80.5 -37.6 2.5 5.2 -2.2 34 34 A K H < S+ 0 0 149 -4,-0.7 -1,-0.2 -27,-0.1 -2,-0.2 0.772 80.4 113.6 -57.9 -20.4 1.7 6.1 -5.9 35 35 A A < - 0 0 2 -4,-0.8 -27,-0.2 -3,-0.1 3,-0.1 -0.049 65.6-142.9 -47.1 155.9 -1.8 6.7 -4.6 36 36 A K S S- 0 0 99 1,-0.2 2,-0.2 -29,-0.1 -1,-0.1 0.914 72.6 -1.5 -90.9 -55.3 -2.8 10.4 -4.9 37 37 A T S >> S- 0 0 71 -30,-0.1 4,-2.0 -31,-0.1 3,-0.8 -0.644 87.4 -85.6-125.0-175.8 -4.8 11.0 -1.7 38 38 A V H 3> S+ 0 0 60 1,-0.3 4,-2.3 2,-0.2 5,-0.4 0.859 129.6 56.5 -63.2 -30.3 -6.0 8.8 1.3 39 39 A E H 3> S+ 0 0 164 1,-0.2 4,-0.5 2,-0.2 -1,-0.3 0.779 108.3 48.2 -72.1 -21.7 -9.0 7.7 -0.8 40 40 A E H <> S+ 0 0 83 -3,-0.8 4,-2.1 3,-0.2 -2,-0.2 0.815 112.4 47.7 -86.5 -31.1 -6.5 6.6 -3.5 41 41 A V H X S+ 0 0 1 -4,-2.0 4,-1.6 2,-0.2 -2,-0.2 0.983 118.8 37.8 -72.7 -56.7 -4.3 4.6 -1.0 42 42 A N H X S+ 0 0 73 -4,-2.3 4,-1.5 1,-0.2 -1,-0.2 0.834 115.0 59.6 -62.9 -27.9 -7.2 2.8 0.8 43 43 A A H X S+ 0 0 38 -4,-0.5 4,-1.1 -5,-0.4 3,-0.3 0.950 101.2 50.9 -66.9 -46.7 -8.8 2.6 -2.7 44 44 A L H >X S+ 0 0 48 -4,-2.1 4,-1.4 1,-0.2 3,-0.6 0.894 106.0 57.8 -59.2 -35.2 -5.8 0.6 -4.1 45 45 A K H 3X S+ 0 0 12 -4,-1.6 4,-0.8 1,-0.3 3,-0.4 0.923 101.9 53.6 -62.0 -40.5 -6.2 -1.7 -1.1 46 46 A N H 3X S+ 0 0 110 -4,-1.5 4,-0.5 -3,-0.3 -1,-0.3 0.769 103.0 60.6 -65.9 -20.7 -9.8 -2.4 -2.2 47 47 A E H XX>S+ 0 0 110 -4,-1.1 4,-1.7 -3,-0.6 3,-1.4 0.884 92.5 62.1 -75.1 -36.3 -8.4 -3.4 -5.6 48 48 A I H 3X5S+ 0 0 0 -4,-1.4 4,-0.6 -3,-0.4 -1,-0.2 0.851 91.3 70.7 -58.5 -27.4 -6.3 -6.2 -4.2 49 49 A L H 3<5S+ 0 0 100 -4,-0.8 -1,-0.3 2,-0.1 -2,-0.2 0.903 123.6 6.3 -56.1 -39.0 -9.6 -7.7 -3.2 50 50 A K H <<5S+ 0 0 159 -3,-1.4 -2,-0.2 -4,-0.5 -3,-0.1 0.789 128.0 55.9-109.6 -62.2 -10.3 -8.4 -6.9 51 51 A A H <5S+ 0 0 59 -4,-1.7 2,-0.5 -5,-0.1 -3,-0.2 0.858 117.2 43.6 -41.2 -37.8 -7.2 -7.5 -9.0 52 52 A H << 0 0 65 -5,-0.8 -1,-0.1 -4,-0.6 0, 0.0 -0.939 360.0 360.0-115.6 129.1 -5.4 -10.0 -6.7 53 53 A A 0 0 136 -2,-0.5 -3,-0.1 0, 0.0 -4,-0.1 -0.705 360.0 360.0 80.4 360.0 -6.9 -13.3 -5.7