==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYPERTHERMOPHILE 19-JAN-98 1GB4 . COMPND 2 MOLECULE: GB1-C3B4; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP.; . AUTHOR S.M.MALAKAUSKAS,S.L.MAYO . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3897.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 12.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 22.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 222 0, 0.0 2,-0.9 0, 0.0 19,-0.0 0.000 360.0 360.0 360.0 91.9 -2.1 -14.0 8.0 2 2 A T + 0 0 52 19,-0.1 19,-1.8 2,-0.0 2,-0.9 -0.609 360.0 160.9-104.8 74.7 -2.9 -11.2 5.6 3 3 A T E -A 20 0A 61 -2,-0.9 17,-0.3 17,-0.2 2,-0.2 -0.802 18.0-168.8 -97.8 104.3 0.2 -9.0 5.6 4 4 A F E -A 19 0A 8 15,-2.6 15,-3.3 -2,-0.9 48,-0.2 -0.607 3.7-154.5 -90.6 152.2 0.3 -6.9 2.5 5 5 A K E -b 52 0B 86 46,-2.1 48,-1.2 13,-0.3 2,-0.2 -0.463 3.4-148.8-113.0-171.9 3.4 -4.9 1.4 6 6 A L E -b 53 0B 0 46,-0.2 11,-0.6 -2,-0.2 2,-0.5 -0.696 3.4-153.3-164.2 107.6 4.0 -1.7 -0.7 7 7 A I E -bC 54 16B 67 46,-1.5 48,-1.3 -2,-0.2 2,-0.7 -0.702 20.6-140.5 -83.7 124.9 7.0 -0.8 -2.8 8 8 A I E -b 55 0B 12 7,-1.3 2,-0.8 -2,-0.5 48,-0.2 -0.759 16.0-171.0 -89.8 116.0 7.4 2.9 -3.1 9 9 A N E +b 56 0B 96 46,-1.7 48,-1.1 -2,-0.7 2,-0.3 -0.524 55.2 71.4-103.5 67.7 8.4 4.0 -6.6 10 10 A G S S- 0 0 25 -2,-0.8 -2,-0.1 3,-0.4 32,-0.0 -0.986 93.8 -92.8-166.0 167.9 9.1 7.7 -6.1 11 11 A K S S+ 0 0 173 -2,-0.3 2,-0.3 3,-0.0 -1,-0.1 0.874 107.5 76.1 -59.8 -33.8 11.7 10.1 -4.5 12 12 A T S S- 0 0 34 27,-0.1 -2,-0.2 -3,-0.1 27,-0.1 -0.618 108.2 -13.1 -80.4 133.7 9.5 10.1 -1.3 13 13 A L - 0 0 45 -2,-0.3 -3,-0.4 1,-0.1 2,-0.1 0.265 64.4-157.6 58.3 163.7 9.8 7.0 0.8 14 14 A K + 0 0 174 -5,-0.1 2,-0.3 -7,-0.0 -1,-0.1 -0.369 46.6 58.9-177.2 88.9 11.5 3.8 -0.6 15 15 A G S S- 0 0 38 -9,-0.2 -7,-1.3 -2,-0.1 2,-0.2 -0.974 79.1 -85.2 174.5-163.4 10.9 0.3 0.8 16 16 A E B -C 7 0B 107 -2,-0.3 2,-0.4 -9,-0.2 -9,-0.2 -0.541 35.5-169.0-133.4 70.7 8.2 -2.3 1.4 17 17 A I - 0 0 79 -11,-0.6 2,-0.3 -2,-0.2 -2,-0.1 -0.432 18.5-144.2 -62.3 114.5 6.5 -1.6 4.8 18 18 A T + 0 0 72 -2,-0.4 2,-0.3 -13,-0.2 -13,-0.3 -0.629 23.8 176.5 -83.6 138.5 4.4 -4.8 5.4 19 19 A I E -A 4 0A 34 -15,-3.3 -15,-2.6 -2,-0.3 2,-0.2 -0.990 26.8-121.1-141.5 150.0 1.0 -4.3 7.1 20 20 A E E +A 3 0A 149 -2,-0.3 2,-0.3 -17,-0.3 -17,-0.2 -0.630 38.8 157.9 -89.8 148.7 -1.9 -6.6 8.1 21 21 A A - 0 0 6 -19,-1.8 3,-0.1 -2,-0.2 4,-0.1 -0.991 55.3-100.7-163.2 159.6 -5.4 -6.0 6.8 22 22 A V S S- 0 0 87 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.891 102.5 -22.2 -53.7 -38.8 -8.8 -7.8 6.1 23 23 A D S > S- 0 0 96 -21,-0.1 4,-2.0 1,-0.1 5,-0.1 -0.950 75.9 -86.6-160.0 175.8 -7.8 -8.0 2.4 24 24 A A H > S+ 0 0 14 -2,-0.3 4,-2.8 1,-0.2 5,-0.2 0.883 121.5 64.3 -62.5 -33.8 -5.5 -6.4 -0.2 25 25 A A H > S+ 0 0 69 1,-0.2 4,-1.4 2,-0.2 -1,-0.2 0.958 106.5 41.1 -54.2 -51.8 -8.3 -3.8 -0.9 26 26 A E H > S+ 0 0 96 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.921 110.8 58.8 -64.1 -40.5 -8.0 -2.4 2.7 27 27 A A H X S+ 0 0 0 -4,-2.0 4,-3.5 1,-0.2 5,-0.3 0.942 102.7 52.7 -54.4 -46.4 -4.2 -2.7 2.5 28 28 A E H X S+ 0 0 67 -4,-2.8 4,-2.8 2,-0.2 -1,-0.2 0.896 111.2 47.8 -58.3 -36.3 -4.3 -0.3 -0.5 29 29 A K H X S+ 0 0 140 -4,-1.4 4,-0.7 -5,-0.2 5,-0.3 0.972 113.5 45.3 -69.1 -50.8 -6.3 2.1 1.6 30 30 A I H >X S+ 0 0 59 -4,-3.1 4,-2.3 1,-0.2 3,-0.5 0.906 119.3 43.8 -58.7 -37.8 -3.9 1.8 4.6 31 31 A F H 3X S+ 0 0 1 -4,-3.5 4,-1.6 -5,-0.3 -1,-0.2 0.883 110.7 54.4 -74.3 -37.3 -1.1 2.2 2.1 32 32 A K H 3< S+ 0 0 86 -4,-2.8 4,-0.3 -5,-0.3 -1,-0.2 0.511 114.9 40.9 -76.3 0.2 -2.9 5.0 0.2 33 33 A Q H X>S+ 0 0 0 -4,-1.6 5,-3.3 2,-0.2 4,-2.8 0.948 106.8 49.1 -69.7 -48.1 1.5 7.7 1.6 36 36 A N H 345S+ 0 0 97 -4,-0.3 -2,-0.2 3,-0.3 -1,-0.2 0.941 104.0 59.5 -58.4 -46.7 -0.4 11.0 2.1 37 37 A D H 3<5S+ 0 0 121 -4,-2.5 -1,-0.3 1,-0.2 -2,-0.2 0.778 118.6 32.4 -54.6 -23.3 0.8 11.4 5.7 38 38 A N H <<5S- 0 0 103 -3,-1.0 -1,-0.2 -4,-0.6 -2,-0.2 0.688 122.3-101.0-105.5 -25.9 4.3 11.5 4.2 39 39 A G T <5 + 0 0 41 -4,-2.8 2,-0.9 1,-0.2 -3,-0.3 0.699 65.0 153.0 109.8 30.7 3.6 13.1 0.8 40 40 A I < + 0 0 2 -5,-3.3 2,-0.4 -7,-0.1 -1,-0.2 -0.800 11.2 150.1 -95.7 106.1 3.5 10.0 -1.5 41 41 A D + 0 0 112 -2,-0.9 2,-0.1 -6,-0.1 3,-0.1 -0.893 26.1 81.4-141.7 111.7 1.2 10.8 -4.5 42 42 A G S S- 0 0 30 -2,-0.4 15,-0.3 1,-0.2 2,-0.2 -0.352 81.8 -13.3-165.3-108.7 1.7 9.3 -8.0 43 43 A E - 0 0 126 -34,-0.2 13,-1.5 -2,-0.1 2,-0.3 -0.606 50.2-155.2-109.8 173.4 0.5 5.9 -9.4 44 44 A W + 0 0 48 11,-0.2 2,-0.4 -2,-0.2 11,-0.2 -0.956 13.5 171.4-152.1 130.3 -0.7 2.7 -7.7 45 45 A T - 0 0 69 9,-0.5 2,-0.3 -2,-0.3 9,-0.3 -0.993 20.5-143.4-142.3 134.2 -0.6 -0.9 -8.7 46 46 A Y - 0 0 84 -2,-0.4 2,-0.7 7,-0.2 7,-0.3 -0.750 6.9-149.5 -97.6 143.7 -1.5 -4.1 -6.8 47 47 A D B >>> -D 52 0B 59 5,-1.9 4,-1.6 -2,-0.3 5,-1.1 -0.848 12.5-177.2-113.9 98.0 0.4 -7.4 -7.3 48 48 A D T 345S+ 0 0 126 -2,-0.7 -1,-0.1 1,-0.2 5,-0.1 0.600 85.0 58.7 -69.7 -6.8 -1.8 -10.4 -6.6 49 49 A A T 345S+ 0 0 82 3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 0.766 124.1 18.0 -92.2 -27.5 1.2 -12.6 -7.2 50 50 A T T <45S- 0 0 75 -3,-0.6 -2,-0.2 2,-0.2 -45,-0.2 0.300 99.1-123.2-122.8 5.7 3.4 -11.1 -4.4 51 51 A K T <5S+ 0 0 104 -4,-1.6 -46,-2.1 1,-0.2 2,-0.4 0.885 72.3 126.4 54.2 36.6 0.6 -9.4 -2.4 52 52 A T E < -bD 5 47B 8 -5,-1.1 -5,-1.9 -48,-0.2 -46,-0.2 -0.968 48.2-150.7-128.0 143.2 2.5 -6.1 -2.9 53 53 A F E -b 6 0B 2 -48,-1.2 -46,-1.5 -2,-0.4 -7,-0.2 -0.212 10.2-137.3 -96.0-168.0 1.3 -2.7 -4.2 54 54 A T E -b 7 0B 32 -9,-0.3 2,-0.9 -48,-0.2 -9,-0.5 -0.656 15.1-172.7-156.3 92.2 3.3 -0.0 -6.1 55 55 A V E -b 8 0B 0 -48,-1.3 -46,-1.7 -11,-0.2 -11,-0.2 -0.772 9.5-172.7 -94.2 108.3 2.8 3.6 -5.2 56 56 A T E b 9 0B 37 -13,-1.5 -46,-0.3 -2,-0.9 -14,-0.1 -0.426 360.0 360.0 -89.5 169.7 4.7 5.9 -7.5 57 57 A E 0 0 90 -48,-1.1 -47,-0.1 -15,-0.3 -1,-0.1 0.502 360.0 360.0-136.0 360.0 4.9 9.7 -7.0