==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNOGLOBULIN BINDING PROTEIN 15-MAY-91 2GB1 . COMPND 2 MOLECULE: PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR A.M.GRONENBORN,G.M.CLORE . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 69.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 151 0, 0.0 19,-2.0 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 120.1 -13.3 0.0 3.9 2 2 A T E -A 19 0A 66 17,-0.2 17,-0.2 19,-0.1 2,-0.2 -0.967 360.0-159.3-129.0 117.9 -9.7 -0.4 5.0 3 3 A Y E -A 18 0A 21 15,-1.1 15,-1.4 -2,-0.5 2,-0.6 -0.512 18.2-122.1 -91.8 164.3 -7.2 -2.3 2.8 4 4 A K E -Ab 17 51A 92 46,-1.3 48,-0.8 13,-0.2 13,-0.2 -0.915 20.8-151.0-111.1 118.9 -3.9 -3.9 4.0 5 5 A L E -A 16 0A 0 11,-2.9 11,-0.5 -2,-0.6 2,-0.5 -0.602 2.4-157.6 -87.0 146.5 -0.7 -2.8 2.5 6 6 A I E -A 15 0A 56 46,-0.4 48,-1.9 -2,-0.2 2,-0.7 -0.909 8.3-151.7-125.2 103.9 2.3 -5.1 2.3 7 7 A L E +Ac 14 54A 6 7,-1.9 7,-1.6 -2,-0.5 48,-0.2 -0.633 16.7 177.9 -79.3 114.9 5.7 -3.3 1.9 8 8 A N + 0 0 70 46,-2.3 5,-0.2 -2,-0.7 -1,-0.1 -0.125 19.7 163.4-105.6 36.9 8.1 -5.5 0.0 9 9 A G - 0 0 2 3,-0.3 30,-0.1 46,-0.2 3,-0.1 -0.214 43.0-128.5 -55.9 144.0 10.9 -3.0 0.1 10 10 A K S S+ 0 0 182 1,-0.2 -1,-0.1 3,-0.0 3,-0.1 0.981 108.6 22.3 -60.0 -58.6 14.3 -4.5 -0.7 11 11 A T S S+ 0 0 144 1,-0.1 2,-0.3 -3,-0.0 -1,-0.2 0.343 135.0 40.4 -91.3 8.1 16.1 -3.0 2.3 12 12 A L - 0 0 80 -3,-0.1 2,-0.3 26,-0.0 -3,-0.3 -0.964 59.9-176.6-157.2 136.9 12.8 -2.6 4.2 13 13 A K + 0 0 158 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.984 21.7 130.2-133.9 146.3 9.6 -4.6 4.7 14 14 A G E -A 7 0A 29 -7,-1.6 -7,-1.9 -2,-0.3 2,-0.2 -0.903 33.4-137.1-167.9-164.5 6.4 -3.8 6.5 15 15 A E E +A 6 0A 121 -9,-0.3 2,-0.3 -2,-0.3 -9,-0.2 -0.813 18.6 169.2-175.5 130.9 2.6 -3.6 6.3 16 16 A T E -A 5 0A 43 -11,-0.5 -11,-2.9 -2,-0.2 2,-0.4 -0.994 26.4-127.8-148.1 153.1 -0.1 -1.1 7.4 17 17 A T E -A 4 0A 81 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.855 23.5-169.7-105.9 138.0 -3.8 -0.7 6.9 18 18 A T E -A 3 0A 32 -15,-1.4 -15,-1.1 -2,-0.4 2,-0.6 -0.914 23.4-120.0-125.2 152.6 -5.3 2.7 5.7 19 19 A E E +A 2 0A 158 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.805 41.7 161.0 -94.1 120.5 -8.9 3.9 5.5 20 20 A A - 0 0 10 -19,-2.0 3,-0.1 -2,-0.6 -2,-0.0 -0.992 39.5-146.9-139.1 146.6 -10.0 4.8 1.9 21 21 A V S S+ 0 0 114 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.735 86.4 11.4 -84.0 -22.2 -13.4 5.2 0.3 22 22 A D S > S- 0 0 67 -21,-0.1 4,-1.0 1,-0.1 -1,-0.1 -0.912 79.1-104.0-146.4 173.6 -12.2 4.0 -3.1 23 23 A A H > S+ 0 0 41 -2,-0.3 4,-1.5 2,-0.2 -1,-0.1 0.832 113.5 58.9 -71.9 -31.2 -9.2 2.2 -4.8 24 24 A A H >> S+ 0 0 62 1,-0.2 4,-1.4 2,-0.2 3,-1.3 0.996 108.1 40.9 -62.1 -64.4 -8.0 5.5 -6.3 25 25 A T H 3> S+ 0 0 39 1,-0.3 4,-2.4 2,-0.2 -1,-0.2 0.785 111.1 61.8 -55.9 -24.4 -7.5 7.4 -3.1 26 26 A A H 3X S+ 0 0 0 -4,-1.0 4,-2.0 2,-0.2 5,-0.4 0.868 98.5 55.8 -70.6 -34.0 -6.1 4.2 -1.6 27 27 A E H X S+ 0 0 2 -4,-2.0 4,-2.5 1,-0.2 3,-0.8 0.936 113.5 57.9 -64.6 -44.7 -0.6 4.4 0.9 31 31 A K H 3X S+ 0 0 115 -4,-1.7 4,-2.4 -5,-0.4 -1,-0.2 0.903 101.4 57.1 -52.2 -40.6 2.0 5.8 -1.6 32 32 A Q H 3X S+ 0 0 139 -4,-2.9 4,-1.0 2,-0.2 -1,-0.3 0.886 109.5 46.1 -58.8 -36.8 2.2 8.8 0.7 33 33 A Y H X< S+ 0 0 106 -4,-1.2 3,-1.4 -3,-0.8 4,-0.2 0.983 109.5 50.8 -69.8 -57.9 3.1 6.5 3.5 34 34 A A H >X>S+ 0 0 0 -4,-2.5 4,-2.3 1,-0.3 3,-2.2 0.866 103.6 62.7 -47.7 -38.2 5.7 4.4 1.6 35 35 A N H 3<5S+ 0 0 99 -4,-2.4 -1,-0.3 -5,-0.3 -2,-0.2 0.904 92.9 61.3 -56.6 -40.5 7.3 7.8 0.6 36 36 A D T <<5S+ 0 0 131 -3,-1.4 -1,-0.3 -4,-1.0 -2,-0.2 0.462 115.9 35.5 -66.7 4.5 8.0 8.5 4.3 37 37 A N T <45S- 0 0 74 -3,-2.2 -2,-0.2 -4,-0.2 -1,-0.2 0.570 114.6-109.7-126.6 -28.6 10.2 5.3 4.0 38 38 A G T <5 + 0 0 50 -4,-2.3 2,-0.6 1,-0.2 -3,-0.2 0.798 68.9 136.9 98.6 36.4 11.6 5.5 0.5 39 39 A V < + 0 0 5 -5,-1.5 2,-0.4 -8,-0.2 -1,-0.2 -0.797 18.7 140.1-118.2 89.6 9.7 2.6 -1.1 40 40 A D + 0 0 65 -2,-0.6 2,-0.1 -6,-0.1 3,-0.1 -0.987 27.5 81.1-133.9 126.6 8.5 3.7 -4.6 41 41 A G S S+ 0 0 50 -2,-0.4 2,-0.4 15,-0.2 15,-0.2 -0.381 82.6 18.7-176.3 -97.4 8.4 1.5 -7.7 42 42 A E E -D 55 0A 142 13,-1.5 13,-2.2 -2,-0.1 2,-0.4 -0.839 61.4-161.8-102.5 137.7 5.8 -1.1 -8.7 43 43 A W E -D 54 0A 70 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.955 7.2-174.7-122.1 136.0 2.4 -1.0 -7.0 44 44 A T E -D 53 0A 73 9,-3.3 9,-1.6 -2,-0.4 2,-0.4 -0.820 12.0-148.8-124.0 164.6 -0.2 -3.9 -6.9 45 45 A Y E -D 52 0A 71 -2,-0.3 2,-0.8 7,-0.2 7,-0.2 -0.992 2.5-160.4-137.0 128.2 -3.8 -4.3 -5.7 46 46 A D E >>> +D 51 0A 68 5,-1.2 5,-1.6 -2,-0.4 3,-1.5 -0.666 17.5 168.5-108.1 77.5 -5.4 -7.4 -4.3 47 47 A D T 345 + 0 0 127 -2,-0.8 -1,-0.1 1,-0.3 5,-0.1 0.509 69.7 77.7 -66.8 1.2 -9.1 -6.8 -4.6 48 48 A A T 345S+ 0 0 85 3,-0.2 -1,-0.3 1,-0.1 -2,-0.0 0.847 118.5 4.6 -79.3 -33.5 -9.5 -10.5 -3.8 49 49 A T T <45S- 0 0 91 -3,-1.5 -2,-0.2 2,-0.1 -1,-0.1 0.100 105.2-104.2-136.5 21.1 -8.9 -10.0 -0.0 50 50 A K T <5S+ 0 0 123 -4,-0.8 -46,-1.3 1,-0.2 2,-0.4 0.973 74.0 140.7 53.0 60.1 -8.7 -6.2 0.2 51 51 A T E < -bD 4 46A 24 -5,-1.6 -5,-1.2 -48,-0.3 -46,-0.2 -0.944 39.8-151.9-137.7 114.8 -4.9 -6.2 0.6 52 52 A F E - D 0 45A 3 -48,-0.8 -46,-0.4 -2,-0.4 2,-0.3 -0.403 16.2-173.5 -79.7 161.9 -2.6 -3.6 -1.1 53 53 A T E + D 0 44A 26 -9,-1.6 -9,-3.3 -48,-0.2 2,-0.3 -0.949 10.2 180.0-159.2 136.3 1.0 -4.5 -1.9 54 54 A V E -cD 7 43A 0 -48,-1.9 -46,-2.3 -2,-0.3 2,-0.4 -0.976 5.4-167.8-136.4 150.3 4.0 -2.6 -3.3 55 55 A T E D 0 42A 52 -13,-2.2 -13,-1.5 -2,-0.3 -46,-0.2 -0.937 360.0 360.0-144.0 119.0 7.5 -3.8 -4.1 56 56 A E 0 0 118 -2,-0.4 -15,-0.2 -15,-0.2 -17,-0.1 -0.001 360.0 360.0 -65.3 360.0 10.6 -1.6 -4.8