==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 17-OCT-77 1GCN . COMPND 2 MOLECULE: GLUCAGON; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR T.L.BLUNDELL,K.SASAKI,S.DOCKERILL,I.J.TICKLE . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3536.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 65.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 37.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A H 0 0 197 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-159.4 50.2 25.6 10.8 2 2 A S + 0 0 130 1,-0.1 0, 0.0 2,-0.0 0, 0.0 0.941 360.0 46.7 -21.1 -57.6 49.1 29.1 10.6 3 3 A Q S S+ 0 0 169 2,-0.1 3,-0.4 3,-0.0 -1,-0.1 0.823 90.7 162.5 -74.4 -12.0 46.3 28.2 8.3 4 4 A G - 0 0 36 1,-0.2 2,-2.7 2,-0.1 3,-0.2 0.683 53.3 -76.5 -14.6 145.3 45.4 25.3 10.7 5 5 A T S S+ 0 0 117 1,-0.2 3,-0.4 3,-0.0 -1,-0.2 -0.020 76.9 129.0 -63.8 54.6 42.0 23.6 10.4 6 6 A F >> + 0 0 161 -2,-2.7 3,-2.9 -3,-0.4 4,-0.6 0.962 69.3 70.0 -66.2 -35.4 39.4 25.9 12.1 7 7 A T H >> S+ 0 0 107 1,-0.3 4,-1.7 2,-0.2 3,-0.9 0.722 91.8 54.0 -49.9 -37.5 37.2 25.7 9.0 8 8 A S H 34 S+ 0 0 81 -3,-0.4 -1,-0.3 1,-0.3 -2,-0.1 0.203 95.5 70.8 -85.2 -1.6 36.3 22.1 9.5 9 9 A D H <4 S+ 0 0 116 -3,-2.9 -1,-0.3 -4,-0.1 3,-0.3 0.856 111.2 26.2 -72.3 -52.8 35.0 22.8 13.0 10 10 A Y H XX S+ 0 0 102 -3,-0.9 3,-2.5 -4,-0.6 4,-1.2 0.843 101.5 75.2 -75.3 -58.8 32.0 24.7 11.7 11 11 A S T 3< S+ 0 0 85 -4,-1.7 -1,-0.2 1,-0.3 -3,-0.1 0.583 101.0 53.5 -52.0 9.6 31.1 23.4 8.2 12 12 A K T >4 S+ 0 0 153 -3,-0.3 3,-1.6 2,-0.1 -1,-0.3 0.617 93.4 64.3-103.4 -58.4 29.8 20.5 10.2 13 13 A Y T X> S+ 0 0 131 -3,-2.5 3,-1.9 -4,-0.2 4,-1.5 0.822 98.4 59.2 -39.6 -40.6 27.4 22.3 12.6 14 14 A L H 3X S+ 0 0 73 -4,-1.2 4,-0.6 1,-0.3 -1,-0.2 0.361 94.9 62.6 -73.8 -5.6 25.5 23.3 9.5 15 15 A D H <4 S+ 0 0 135 -3,-1.6 -1,-0.3 2,-0.1 -2,-0.2 0.389 106.2 47.6 -93.6 4.6 25.1 19.6 8.9 16 16 A S H <> S+ 0 0 75 -3,-1.9 4,-2.1 3,-0.1 -2,-0.2 0.727 106.9 52.5-113.1 -28.8 23.2 19.5 12.1 17 17 A R H X S+ 0 0 146 -4,-1.5 4,-2.7 2,-0.2 -3,-0.1 0.956 110.1 47.1 -79.8 -36.4 20.9 22.5 11.6 18 18 A R H X S+ 0 0 202 -4,-0.6 4,-0.7 2,-0.2 -1,-0.2 0.532 111.4 55.9 -83.1 4.4 19.5 21.3 8.2 19 19 A A H > S+ 0 0 49 2,-0.2 4,-1.0 3,-0.1 -2,-0.2 0.871 110.2 41.4-100.9 -30.2 19.1 18.0 10.1 20 20 A Q H X S+ 0 0 141 -4,-2.1 4,-0.6 1,-0.2 3,-0.4 0.902 110.9 61.0 -81.0 -17.5 17.0 19.6 12.7 21 21 A D H >< S+ 0 0 84 -4,-2.7 3,-0.9 1,-0.3 4,-0.3 0.842 98.9 54.1 -80.4 -33.4 15.4 21.5 9.8 22 22 A F H >X S+ 0 0 111 -4,-0.7 3,-2.5 1,-0.2 4,-1.6 0.865 94.4 70.9 -60.7 -40.1 14.2 18.3 8.3 23 23 A V H 3< S+ 0 0 87 -4,-1.0 5,-0.3 -3,-0.4 -1,-0.2 0.790 93.8 57.3 -63.4 -5.8 12.6 17.4 11.6 24 24 A Q T << S+ 0 0 99 -3,-0.9 -1,-0.3 -4,-0.6 -2,-0.2 0.661 104.7 48.0 -90.8 -32.6 10.1 20.1 10.8 25 25 A W T <4 S+ 0 0 218 -3,-2.5 -2,-0.2 -4,-0.3 -1,-0.1 0.960 109.5 50.1 -76.8 -43.4 8.9 18.7 7.5 26 26 A L S < S+ 0 0 130 -4,-1.6 -2,-0.2 2,-0.0 -3,-0.1 0.615 136.5 9.1 -76.9 9.5 8.4 15.2 8.7 27 27 A M + 0 0 119 -5,-0.3 -3,-0.2 -4,-0.2 -4,-0.0 0.183 61.1 142.1-145.3 -94.0 6.4 17.0 11.5 28 28 A N 0 0 102 -5,-0.3 -4,-0.1 -2,-0.0 -1,-0.0 0.908 360.0 360.0 15.7 64.0 5.4 20.6 11.7 29 29 A T 0 0 180 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.570 360.0 360.0 22.1 360.0 2.0 19.8 13.3