==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 16-MAR-06 2GDL . COMPND 2 MOLECULE: MYELOID ANTIMICROBIAL PEPTIDE 27; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.I.HERRERA,O.PRAKASH,G.ZHANG . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3606.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 38.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 29.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 221 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 153.8 -16.8 5.2 -12.5 2 2 A V + 0 0 134 1,-0.0 2,-0.3 2,-0.0 0, 0.0 -0.174 360.0 63.5-156.5 50.6 -15.1 6.5 -9.3 3 3 A Q - 0 0 101 5,-0.0 2,-0.2 3,-0.0 -1,-0.0 -0.968 53.4-144.3-168.9 155.2 -11.5 7.5 -10.1 4 4 A R >> - 0 0 188 -2,-0.3 4,-1.4 1,-0.1 3,-0.8 -0.745 40.8-104.7-114.8 168.6 -9.1 9.9 -12.0 5 5 A G H 3> S+ 0 0 46 1,-0.2 4,-1.9 -2,-0.2 3,-0.2 0.879 122.0 61.2 -60.5 -36.4 -5.7 9.0 -13.5 6 6 A R H 34 S+ 0 0 195 1,-0.2 -1,-0.2 2,-0.2 4,-0.0 0.819 118.3 29.2 -60.4 -30.1 -4.1 10.9 -10.6 7 7 A F H <4 S+ 0 0 127 -3,-0.8 -1,-0.2 2,-0.1 -2,-0.2 0.443 118.6 57.1-107.3 -0.8 -5.8 8.3 -8.2 8 8 A G H < S+ 0 0 10 -4,-1.4 5,-0.2 -3,-0.2 -3,-0.2 0.645 124.3 12.2 -95.0 -18.2 -5.9 5.3 -10.7 9 9 A R S < S+ 0 0 190 -4,-1.9 -1,-0.1 -5,-0.2 -2,-0.1 -0.295 86.0 110.3-159.1 61.1 -2.2 5.1 -11.4 10 10 A F S S- 0 0 140 -3,-0.1 -1,-0.1 -4,-0.0 -4,-0.0 -0.467 111.8 -50.4-136.8 60.0 0.1 7.2 -9.1 11 11 A L S S+ 0 0 108 4,-0.1 -2,-0.1 -3,-0.1 5,-0.0 0.945 128.1 88.7 68.1 49.0 1.9 4.6 -7.1 12 12 A R S S+ 0 0 143 -4,-0.1 -3,-0.1 3,-0.0 -4,-0.1 0.517 93.5 15.7-140.9 -60.4 -1.5 3.0 -6.3 13 13 A K S S+ 0 0 107 -5,-0.2 -5,-0.0 2,-0.1 -6,-0.0 -0.207 142.0 14.5-117.2 40.2 -2.7 0.3 -8.8 14 14 A I + 0 0 64 12,-0.0 2,-1.4 0, 0.0 9,-0.2 0.177 62.0 169.6-173.5 -52.3 0.7 -0.3 -10.5 15 15 A R + 0 0 93 1,-0.2 -4,-0.1 7,-0.1 -2,-0.1 -0.362 10.5 172.1 56.0 -89.5 3.8 1.1 -8.7 16 16 A R - 0 0 142 -2,-1.4 -1,-0.2 1,-0.1 2,-0.0 0.953 16.3-171.9 50.0 57.2 6.3 -0.7 -10.9 17 17 A F > - 0 0 112 -3,-0.1 3,-1.8 1,-0.1 -1,-0.1 -0.300 42.9 -86.8 -73.2 167.8 9.2 1.2 -9.3 18 18 A R T 3 S+ 0 0 243 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.915 132.9 39.4 -47.8 -57.7 12.6 0.7 -11.1 19 19 A P T 3 S- 0 0 90 0, 0.0 -1,-0.3 0, 0.0 -3,-0.0 0.587 115.8-120.9 -69.0 -6.4 13.5 -2.5 -9.1 20 20 A K < + 0 0 102 -3,-1.8 -2,-0.1 -5,-0.0 -5,-0.1 0.918 47.5 163.2 72.1 97.8 9.8 -3.6 -9.4 21 21 A V > + 0 0 76 3,-0.1 4,-0.9 -4,-0.0 3,-0.4 0.761 69.8 16.3-115.6 -74.5 8.2 -4.1 -5.9 22 22 A T H > S+ 0 0 60 1,-0.2 4,-2.6 2,-0.2 3,-0.4 0.873 117.8 66.5 -76.2 -34.0 4.4 -4.3 -5.6 23 23 A I H > S+ 0 0 42 1,-0.2 4,-3.0 2,-0.2 -1,-0.2 0.860 99.9 54.4 -49.8 -34.4 4.0 -4.9 -9.4 24 24 A T H > S+ 0 0 84 -3,-0.4 4,-2.4 2,-0.2 -1,-0.2 0.910 105.1 51.0 -67.5 -40.6 5.7 -8.2 -8.6 25 25 A I H X S+ 0 0 122 -4,-0.9 4,-2.0 -3,-0.4 -2,-0.2 0.955 114.0 44.7 -59.0 -48.5 3.1 -9.0 -5.9 26 26 A Q H X S+ 0 0 79 -4,-2.6 4,-3.2 1,-0.2 5,-0.2 0.930 112.0 53.2 -59.2 -43.9 0.4 -8.2 -8.5 27 27 A G H X S+ 0 0 24 -4,-3.0 4,-2.9 -5,-0.3 -1,-0.2 0.830 105.5 54.1 -61.5 -32.9 2.4 -10.3 -11.0 28 28 A S H < S+ 0 0 88 -4,-2.4 -1,-0.2 -3,-0.2 -2,-0.2 0.956 114.1 40.5 -65.2 -48.1 2.4 -13.2 -8.6 29 29 A A H < S+ 0 0 82 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.956 120.5 43.3 -64.0 -50.1 -1.4 -13.2 -8.3 30 30 A R H < 0 0 174 -4,-3.2 -2,-0.2 1,-0.3 -3,-0.2 0.947 360.0 360.0 -61.3 -50.0 -2.0 -12.5 -12.0 31 31 A F < 0 0 219 -4,-2.9 -1,-0.3 -5,-0.2 0, 0.0 -0.896 360.0 360.0-111.0 360.0 0.6 -15.1 -13.1