==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE/TRANSPORT PROTEIN 17-MAR-06 2GDY . COMPND 2 MOLECULE: TYROCIDINE SYNTHETASE III; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS PARABREVIS; . AUTHOR A.KOGLIN,F.LOEHR,V.V.ROGOV,M.A.MARAHIEL,F.BERNHARD,V.DOETSCH . 85 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5732.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 49.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 10.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 18.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 244 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 87.8 2.0 1.1 -3.3 2 2 A G - 0 0 67 0, 0.0 2,-0.4 0, 0.0 0, 0.0 -0.979 360.0-137.0-135.2 122.8 4.2 4.1 -3.3 3 3 A V - 0 0 134 -2,-0.4 2,-0.2 2,-0.0 31,-0.0 -0.629 26.8-164.0 -77.3 128.6 7.5 4.6 -5.1 4 4 A T - 0 0 99 -2,-0.4 2,-1.9 30,-0.1 3,-0.3 -0.638 34.5 -87.1-110.5 169.0 10.1 6.4 -3.0 5 5 A E + 0 0 105 -2,-0.2 3,-0.4 1,-0.2 30,-0.1 -0.514 63.0 146.1 -79.1 81.0 13.4 8.1 -3.7 6 6 A A S S+ 0 0 81 -2,-1.9 -1,-0.2 1,-0.2 29,-0.1 0.955 79.9 30.8 -79.4 -54.1 15.7 5.1 -3.6 7 7 A Q S S+ 0 0 138 27,-0.9 29,-0.2 -3,-0.3 -1,-0.2 -0.158 90.2 173.3 -97.5 36.1 18.2 6.2 -6.3 8 8 A Y - 0 0 125 -3,-0.4 26,-0.2 27,-0.2 24,-0.1 -0.242 54.6 -38.3 -47.0 124.0 17.6 9.8 -5.4 9 9 A V S S- 0 0 33 24,-2.0 29,-0.1 1,-0.1 8,-0.0 -0.078 78.2 -96.3 51.3-151.1 19.9 12.1 -7.4 10 10 A A - 0 0 46 7,-0.1 2,-0.4 25,-0.1 -1,-0.1 -0.593 24.4-147.3-167.1 97.7 23.5 10.9 -7.8 11 11 A P + 0 0 108 0, 0.0 4,-0.1 0, 0.0 -2,-0.0 -0.557 27.6 163.3 -70.1 124.4 26.4 12.0 -5.6 12 12 A T - 0 0 85 -2,-0.4 3,-0.0 2,-0.1 0, 0.0 0.803 69.4 -10.2-105.5 -74.1 29.7 12.2 -7.6 13 13 A N S S- 0 0 47 1,-0.0 2,-3.1 0, 0.0 0, 0.0 -0.148 86.3-109.4-128.4 37.3 32.5 14.1 -5.9 14 14 A A S > S+ 0 0 73 1,-0.3 4,-2.5 2,-0.0 5,-0.2 -0.330 118.7 59.2 68.3 -62.6 30.8 15.8 -2.9 15 15 A V H > S+ 0 0 51 -2,-3.1 4,-1.8 1,-0.2 -1,-0.3 0.924 106.7 47.4 -58.7 -45.9 31.1 19.2 -4.6 16 16 A E H > S+ 0 0 17 2,-0.2 4,-2.8 1,-0.2 -1,-0.2 0.899 110.6 51.8 -62.1 -43.4 29.0 18.0 -7.5 17 17 A S H > S+ 0 0 27 1,-0.2 4,-1.6 2,-0.2 -2,-0.2 0.918 109.6 48.6 -62.4 -44.2 26.4 16.5 -5.2 18 18 A K H X S+ 0 0 126 -4,-2.5 4,-1.2 1,-0.2 -1,-0.2 0.852 112.5 50.3 -63.8 -34.5 26.1 19.8 -3.3 19 19 A L H >X>S+ 0 0 19 -4,-1.8 4,-3.0 -5,-0.2 5,-0.5 0.944 103.4 59.0 -67.1 -45.6 25.7 21.5 -6.6 20 20 A A H 3X5S+ 0 0 7 -4,-2.8 4,-1.4 1,-0.3 -2,-0.2 0.856 110.3 42.2 -52.6 -40.5 23.1 19.0 -7.8 21 21 A E H 3<5S+ 0 0 111 -4,-1.6 -1,-0.3 1,-0.2 -2,-0.2 0.766 118.0 47.2 -79.3 -24.7 20.8 20.0 -4.9 22 22 A I H <<5S+ 0 0 129 -4,-1.2 -2,-0.2 -3,-0.5 -1,-0.2 0.789 128.4 19.8 -87.9 -27.4 21.6 23.7 -5.3 23 23 A W H ><5 + 0 0 12 -4,-3.0 3,-3.4 1,-0.1 2,-1.8 0.816 67.9 169.8-109.8 -38.2 21.1 24.0 -9.0 24 24 A E T 3< -A 36 0A 22 3,-1.7 -24,-2.0 -26,-0.1 3,-1.4 -0.416 69.9 -36.1-134.8-143.1 14.0 12.8 -8.8 34 34 A I T 3 S+ 0 0 67 1,-0.3 -27,-0.9 -26,-0.2 -28,-0.2 0.247 141.6 29.7 -75.2 15.5 14.2 9.2 -7.7 35 35 A L T > S- 0 0 95 1,-0.5 3,-1.3 -29,-0.1 -1,-0.3 -0.025 110.2-111.2-165.8 39.5 16.9 8.7 -10.3 36 36 A D B < -A 33 0A 21 -3,-1.4 -3,-1.7 -29,-0.2 -1,-0.5 -0.288 61.9 -56.7 64.2-142.4 18.7 12.1 -10.7 37 37 A N T > - 0 0 2 1,-0.4 3,-1.8 -5,-0.2 2,-0.3 -0.336 67.5-122.8-127.6 47.9 18.1 13.8 -14.0 38 38 A F T < S- 0 0 109 -3,-1.3 -1,-0.4 1,-0.2 35,-0.1 -0.268 76.9 -32.8 44.1-101.2 19.4 10.9 -16.2 39 39 A F T 3 S+ 0 0 81 33,-0.4 35,-0.3 -2,-0.3 -1,-0.2 -0.317 119.1 86.2-140.9 55.0 22.1 12.7 -18.1 40 40 A Q < + 0 0 40 -3,-1.8 -1,-0.1 33,-0.1 -2,-0.1 -0.299 45.6 112.3-149.4 60.6 21.0 16.3 -18.5 41 41 A I S S+ 0 0 14 -3,-0.1 28,-0.1 27,-0.1 -3,-0.1 0.658 90.8 14.5-106.8 -20.2 22.0 18.3 -15.5 42 42 A G S S+ 0 0 0 26,-0.2 8,-3.1 29,-0.2 9,-0.5 0.034 131.3 4.9-151.0 33.2 24.6 20.6 -16.9 43 43 A G > + 0 0 0 6,-0.2 2,-3.7 4,-0.2 3,-0.8 -0.341 61.2 124.9-169.1-107.6 24.5 20.7 -20.6 44 44 A H T 3 S+ 0 0 36 25,-1.4 29,-0.1 27,-0.8 25,-0.1 -0.161 94.0 33.9 59.6 -51.5 22.1 19.0 -23.1 45 45 A S T 3 S+ 0 0 84 -2,-3.7 -1,-0.3 26,-0.1 24,-0.0 0.906 143.4 7.2 -96.5 -65.6 21.1 22.2 -24.9 46 46 A L S < S- 0 0 112 -3,-0.8 -2,-0.2 23,-0.0 24,-0.0 0.583 91.4-142.1 -92.3 -12.7 24.2 24.4 -24.9 47 47 A K S S+ 0 0 81 -4,-0.3 -4,-0.2 22,-0.1 23,-0.1 0.952 83.1 73.7 49.7 63.3 26.3 21.5 -23.5 48 48 A A > + 0 0 34 -6,-0.2 4,-1.5 21,-0.2 5,-0.2 0.296 51.2 107.9-179.0 -9.2 28.3 23.9 -21.3 49 49 A M H > S+ 0 0 16 1,-0.2 4,-1.4 2,-0.2 3,-0.2 0.891 91.0 42.5 -54.7 -41.2 26.1 25.0 -18.4 50 50 A A H >>S+ 0 0 2 -8,-3.1 4,-2.7 2,-0.2 5,-2.1 0.837 106.6 61.8 -75.3 -33.0 28.1 22.8 -16.0 51 51 A V H 4>S+ 0 0 43 -9,-0.5 5,-2.7 1,-0.2 -1,-0.2 0.795 115.9 33.4 -62.4 -26.4 31.3 23.9 -17.6 52 52 A A H <5S+ 0 0 62 -4,-1.5 -1,-0.2 -3,-0.2 -2,-0.2 0.668 120.4 50.3-101.4 -20.8 30.5 27.4 -16.4 53 53 A A H <5S- 0 0 20 -4,-1.4 -3,-0.2 -5,-0.2 -2,-0.2 0.902 134.3 -1.7 -86.6 -43.5 28.7 26.5 -13.3 54 54 A Q T X>S+ 0 0 0 -4,-2.7 4,-1.1 -5,-0.1 5,-0.9 0.732 133.2 48.4-118.2 -40.6 31.1 24.1 -11.6 55 55 A V H >>XS+ 0 0 5 -5,-2.1 5,-3.7 3,-0.2 4,-1.9 0.994 106.5 53.2 -67.4 -59.5 34.1 23.8 -13.9 56 56 A H H 34< S- 0 0 96 -35,-0.3 3,-0.9 -36,-0.0 4,-0.1 -0.839 84.3-109.2-121.5 163.0 22.8 9.4 -24.1 75 75 A K G >> S+ 0 0 150 -2,-0.3 4,-1.8 1,-0.3 3,-1.2 0.120 88.7 116.4 -76.0 24.4 25.9 7.7 -22.6 76 76 A A G 34 + 0 0 27 1,-0.3 4,-0.4 2,-0.2 -1,-0.3 0.718 58.3 72.1 -66.2 -21.6 27.5 10.2 -24.9 77 77 A L G <> S+ 0 0 30 -3,-0.9 4,-1.7 1,-0.2 -10,-0.3 0.868 105.6 37.0 -60.8 -34.8 29.0 11.7 -21.7 78 78 A A H <> S+ 0 0 44 -3,-1.2 4,-1.7 2,-0.2 -2,-0.2 0.864 114.3 54.6 -83.5 -38.2 31.2 8.7 -21.6 79 79 A Q H < S+ 0 0 134 -4,-1.8 -2,-0.2 2,-0.2 -1,-0.2 0.398 116.0 41.5 -78.8 3.6 31.7 8.5 -25.3 80 80 A Y H >> S+ 0 0 106 -4,-0.4 4,-3.3 -3,-0.2 3,-1.2 0.736 119.8 36.1-108.4 -56.5 32.9 12.1 -25.2 81 81 A V H 3< S+ 0 0 21 -4,-1.7 -2,-0.2 1,-0.3 -3,-0.2 0.623 125.3 43.1 -79.7 -11.7 35.1 12.4 -22.2 82 82 A A T 3< S+ 0 0 73 -4,-1.7 -1,-0.3 3,-0.2 -3,-0.1 0.076 123.6 36.3-117.0 21.6 36.5 8.9 -22.6 83 83 A T T <4 S+ 0 0 77 -3,-1.2 -2,-0.2 0, 0.0 -3,-0.1 0.466 125.0 35.6-134.9 -36.1 36.9 9.2 -26.4 84 84 A R < 0 0 188 -4,-3.3 -3,-0.2 1,-0.0 -2,-0.1 0.155 360.0 360.0-103.5 14.6 38.0 12.8 -26.8 85 85 A S 0 0 102 -5,-0.1 -3,-0.2 0, 0.0 -4,-0.1 0.281 360.0 360.0-156.9 360.0 39.9 12.6 -23.6