==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM, PROTEIN BINDING 28-MAR-06 2GI9 . COMPND 2 MOLECULE: IMMUNOGLOBULIN B1 BINDING DOMAIN OF PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR W.T.FRANKS,B.J.WYLIE,S.A.STELLFOX,C.M.RIENSTRA . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3772.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 117 0, 0.0 19,-2.4 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 152.0 -1.9 1.2 2.7 2 2 A Q E -A 19 0A 146 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.812 360.0-170.6 -94.2 126.6 1.2 -0.8 3.8 3 3 A Y E -A 18 0A 6 15,-2.9 15,-2.0 -2,-0.5 2,-0.3 -0.833 10.6-142.4-115.4 152.3 3.7 1.1 6.0 4 4 A K E -Ab 17 51A 69 46,-2.6 48,-3.1 -2,-0.3 2,-0.4 -0.883 5.5-159.3-113.9 146.4 7.2 0.2 7.2 5 5 A L E -Ab 16 52A 0 11,-2.8 11,-2.2 -2,-0.3 2,-0.5 -0.999 2.8-161.9-121.8 125.4 8.8 0.8 10.6 6 6 A I E -Ab 15 53A 56 46,-2.6 48,-2.4 -2,-0.4 2,-0.5 -0.947 11.3-157.3-104.7 123.7 12.6 0.8 11.0 7 7 A L E +Ab 14 54A 4 7,-3.1 7,-2.5 -2,-0.5 48,-0.2 -0.890 20.0 175.1-104.1 125.5 13.7 0.4 14.6 8 8 A N E +Ab 13 55A 80 46,-3.0 48,-2.4 -2,-0.5 5,-0.2 -0.596 29.1 154.4-119.9 65.5 17.1 1.6 15.7 9 9 A G - 0 0 3 3,-2.2 30,-0.1 46,-0.2 32,-0.0 -0.370 58.1-111.2 -86.0 168.7 16.7 0.8 19.4 10 10 A K S S+ 0 0 167 -2,-0.1 3,-0.1 1,-0.1 -1,-0.1 0.882 117.0 12.5 -61.8 -39.6 19.5 0.1 21.9 11 11 A T S S+ 0 0 137 1,-0.2 2,-0.5 27,-0.1 -1,-0.1 0.738 127.0 52.8-106.6 -43.0 18.3 -3.5 22.2 12 12 A L + 0 0 41 25,-0.1 -3,-2.2 2,-0.0 2,-0.3 -0.913 60.9 166.0-110.7 124.7 15.9 -4.0 19.3 13 13 A K E +A 8 0A 124 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -0.958 28.2 64.7-132.8 147.9 16.8 -3.2 15.7 14 14 A G E -A 7 0A 33 -7,-2.5 -7,-3.1 -2,-0.3 2,-0.4 -0.967 69.3 -60.9 144.4-153.3 15.2 -4.1 12.4 15 15 A E E +A 6 0A 128 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.984 35.1 171.0-139.1 140.4 12.1 -3.6 10.3 16 16 A T E -A 5 0A 32 -11,-2.2 -11,-2.8 -2,-0.4 2,-0.3 -0.881 16.0-146.7-138.6 170.7 8.3 -4.4 10.6 17 17 A T E -A 4 0A 89 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.2 -0.907 11.7-178.1-134.9 161.9 5.2 -3.5 8.6 18 18 A T E -A 3 0A 34 -15,-2.0 -15,-2.9 -2,-0.3 2,-0.5 -0.986 24.2-126.0-153.4 162.3 1.6 -2.8 9.2 19 19 A E E +A 2 0A 162 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.963 38.9 158.0-110.5 128.3 -1.5 -2.0 7.1 20 20 A A - 0 0 9 -19,-2.4 3,-0.1 -2,-0.5 -2,-0.0 -0.978 50.0-117.2-150.5 156.2 -3.5 1.1 8.0 21 21 A V S S- 0 0 129 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.825 94.2 -7.1 -66.5 -31.4 -5.9 3.6 6.4 22 22 A D S > S- 0 0 75 -21,-0.1 4,-2.2 1,-0.1 5,-0.2 -0.947 77.4 -92.9-156.1 176.9 -3.6 6.5 6.7 23 23 A A H > S+ 0 0 26 -2,-0.3 4,-2.9 1,-0.2 5,-0.2 0.872 118.6 55.8 -69.8 -39.6 -0.3 7.6 8.2 24 24 A A H > S+ 0 0 47 2,-0.2 4,-1.6 1,-0.2 -1,-0.2 0.896 111.2 46.8 -61.2 -36.9 -1.7 9.0 11.5 25 25 A T H > S+ 0 0 57 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.940 112.1 48.6 -67.3 -47.4 -3.3 5.6 12.1 26 26 A A H X S+ 0 0 0 -4,-2.2 4,-2.9 1,-0.2 5,-0.2 0.890 107.0 58.1 -59.9 -40.0 -0.1 3.7 11.2 27 27 A E H X S+ 0 0 66 -4,-2.9 4,-2.7 1,-0.2 -1,-0.2 0.920 106.0 47.9 -57.7 -43.4 1.8 5.9 13.5 28 28 A K H X S+ 0 0 119 -4,-1.6 4,-2.1 2,-0.2 -1,-0.2 0.911 112.1 49.8 -62.2 -41.9 -0.4 4.9 16.5 29 29 A V H X S+ 0 0 56 -4,-2.0 4,-2.1 1,-0.2 -2,-0.2 0.932 114.4 44.4 -62.5 -47.8 -0.0 1.3 15.6 30 30 A F H X S+ 0 0 3 -4,-2.9 4,-2.8 2,-0.2 -2,-0.2 0.851 109.1 55.0 -67.9 -36.3 3.8 1.6 15.4 31 31 A K H X S+ 0 0 65 -4,-2.7 4,-2.5 -5,-0.2 -1,-0.2 0.897 110.3 47.6 -65.0 -38.3 4.1 3.6 18.5 32 32 A Q H X S+ 0 0 124 -4,-2.1 4,-2.9 2,-0.2 -2,-0.2 0.900 110.5 51.8 -64.1 -40.8 2.3 0.9 20.4 33 33 A Y H X S+ 0 0 82 -4,-2.1 4,-1.1 2,-0.2 -2,-0.2 0.940 112.0 46.6 -59.3 -46.5 4.5 -1.7 18.8 34 34 A A H ><>S+ 0 0 0 -4,-2.8 5,-2.7 1,-0.2 3,-0.8 0.953 114.1 47.1 -63.3 -46.1 7.6 0.2 19.9 35 35 A N H ><5S+ 0 0 107 -4,-2.5 3,-1.9 1,-0.3 -2,-0.2 0.922 109.8 52.5 -60.2 -45.4 6.3 0.6 23.4 36 36 A D H 3<5S+ 0 0 119 -4,-2.9 -1,-0.3 1,-0.3 -2,-0.2 0.727 111.3 49.0 -63.4 -22.1 5.3 -3.0 23.7 37 37 A N T <<5S- 0 0 81 -4,-1.1 -1,-0.3 -3,-0.8 -2,-0.2 0.188 122.0-104.8-103.3 11.8 8.8 -4.0 22.7 38 38 A G T < 5S+ 0 0 63 -3,-1.9 2,-0.4 1,-0.2 -3,-0.2 0.593 73.6 137.3 86.0 9.7 10.5 -1.6 25.2 39 39 A V < + 0 0 4 -5,-2.7 2,-0.4 -6,-0.2 -1,-0.2 -0.768 22.4 171.5 -97.2 133.6 11.6 1.1 22.7 40 40 A D + 0 0 132 -2,-0.4 2,-0.2 -5,-0.0 14,-0.0 -0.924 31.0 114.6-139.9 111.1 11.3 4.8 23.5 41 41 A G - 0 0 23 -2,-0.4 2,-0.3 15,-0.1 15,-0.2 -0.759 61.5 -52.2-155.5-164.0 12.9 7.1 21.0 42 42 A E E -C 55 0A 158 13,-2.7 13,-2.3 -2,-0.2 2,-0.3 -0.741 50.6-145.1 -96.1 140.1 12.8 9.8 18.4 43 43 A W E +C 54 0A 58 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.803 18.4 179.6-113.5 146.8 10.5 9.4 15.4 44 44 A T E -C 53 0A 81 9,-1.9 9,-2.2 -2,-0.3 2,-0.3 -0.944 8.2-162.8-131.5 158.6 10.4 10.2 11.7 45 45 A Y E -C 52 0A 76 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.975 0.9-168.8-135.8 130.3 7.9 9.6 9.0 46 46 A D E >>> -C 51 0A 83 5,-2.7 5,-1.7 -2,-0.3 3,-1.5 -0.930 4.8-167.5-118.8 104.4 8.7 9.8 5.3 47 47 A D T 345S+ 0 0 87 -2,-0.6 3,-0.4 1,-0.3 -1,-0.1 0.784 82.4 69.8 -62.5 -24.7 5.6 9.8 3.2 48 48 A A T 345S+ 0 0 87 1,-0.2 -1,-0.3 3,-0.1 -2,-0.0 0.659 117.5 21.8 -71.4 -16.2 7.6 9.2 -0.0 49 49 A T T <45S- 0 0 85 -3,-1.5 -1,-0.2 2,-0.1 -2,-0.2 0.252 102.4-121.3-126.0 7.5 8.5 5.7 1.1 50 50 A K T <5 + 0 0 51 -4,-0.7 -46,-2.6 -3,-0.4 2,-0.5 0.843 67.1 143.5 53.0 39.8 5.6 5.1 3.6 51 51 A T E < -bC 4 46A 13 -5,-1.7 -5,-2.7 -48,-0.2 2,-0.3 -0.931 36.7-168.7-122.6 129.1 8.4 4.6 6.3 52 52 A F E -bC 5 45A 2 -48,-3.1 -46,-2.6 -2,-0.5 2,-0.4 -0.790 9.7-161.2 -98.7 151.5 8.5 5.5 9.9 53 53 A T E -bC 6 44A 31 -9,-2.2 -9,-1.9 -2,-0.3 2,-0.4 -0.988 8.1-166.8-128.6 148.5 11.7 5.3 12.0 54 54 A V E -bC 7 43A 0 -48,-2.4 -46,-3.0 -2,-0.4 2,-0.4 -0.997 13.8-175.6-131.0 130.9 12.2 5.2 15.7 55 55 A T E bC 8 42A 49 -13,-2.3 -13,-2.7 -2,-0.4 -46,-0.2 -0.983 360.0 360.0-133.2 129.2 15.7 5.7 17.1 56 56 A E 0 0 96 -48,-2.4 -15,-0.1 -2,-0.4 -17,-0.0 -0.484 360.0 360.0 -96.9 360.0 17.1 5.6 20.6