==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 30-MAR-06 2GJ0 . COMPND 2 MOLECULE: CYCLOVIOLACIN O14; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR D.C.IRELAND,M.L.COLGRAVE,D.J.CRAIK . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2236.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 58.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 29.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 45 0, 0.0 2,-0.6 0, 0.0 30,-0.3 0.000 360.0 360.0 360.0 -20.2 4.1 4.5 1.9 2 2 A S B > -A 30 0A 61 28,-2.1 28,-3.1 1,-0.2 4,-1.1 -0.706 360.0-172.2 -84.8 116.6 6.5 2.4 -0.1 3 3 A I H > S+ 0 0 55 -2,-0.6 4,-2.4 26,-0.3 3,-0.4 0.966 83.8 44.7 -71.2 -56.7 4.6 0.5 -2.9 4 4 A P H 4 S+ 0 0 123 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.755 107.9 62.3 -61.2 -25.8 7.5 -1.8 -4.2 5 5 A A H 4 S+ 0 0 70 25,-0.1 -2,-0.2 1,-0.1 24,-0.1 0.916 115.7 27.1 -67.2 -45.8 8.5 -2.6 -0.6 6 6 A a H < S- 0 0 19 -4,-1.1 -3,-0.1 -3,-0.4 23,-0.1 0.938 76.1-169.3 -82.5 -53.2 5.2 -4.3 0.3 7 7 A G < + 0 0 63 -4,-2.4 2,-0.2 1,-0.2 22,-0.1 0.791 39.3 138.2 65.3 28.4 4.0 -5.5 -3.1 8 8 A E B -C 28 0B 25 20,-1.1 20,-1.2 -5,-0.3 2,-0.5 -0.691 45.7-140.3-103.8 157.8 0.6 -6.3 -1.6 9 9 A S - 0 0 59 18,-0.3 2,-0.4 -2,-0.2 18,-0.3 -0.972 8.5-151.5-125.0 125.0 -2.8 -5.7 -3.1 10 10 A b + 0 0 6 -2,-0.5 2,-0.1 16,-0.2 4,-0.1 -0.735 37.6 123.5 -95.6 139.9 -5.9 -4.5 -1.2 11 11 A F S S- 0 0 131 2,-1.0 2,-2.0 -2,-0.4 -1,-0.1 -0.377 78.1 -3.9-153.3-125.1 -9.4 -5.3 -2.3 12 12 A K S S+ 0 0 213 -2,-0.1 2,-0.3 2,-0.0 -2,-0.0 -0.233 127.4 46.1 -79.1 49.9 -12.3 -7.0 -0.6 13 13 A G S S- 0 0 33 -2,-2.0 -2,-1.0 0, 0.0 3,-0.1 -0.913 92.5 -86.7 179.2 155.7 -10.0 -7.6 2.4 14 14 A K - 0 0 137 -2,-0.3 -3,-0.1 1,-0.2 7,-0.1 -0.228 64.9 -71.1 -69.5 163.5 -7.5 -5.9 4.7 15 15 A c - 0 0 24 5,-0.2 -1,-0.2 1,-0.1 4,-0.1 -0.264 37.1-153.9 -57.2 136.4 -3.8 -5.8 3.8 16 16 A Y S S+ 0 0 135 -7,-0.1 -1,-0.1 -3,-0.1 -2,-0.1 0.899 77.1 73.8 -79.9 -44.2 -2.1 -9.2 4.0 17 17 A T S > S- 0 0 50 1,-0.1 3,-2.1 11,-0.1 -1,-0.1 -0.620 92.4-118.5 -77.3 116.5 1.4 -7.9 4.7 18 18 A P T 3 S+ 0 0 109 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.259 97.1 23.7 -55.9 131.7 1.7 -6.5 8.3 19 19 A G T 3 S+ 0 0 49 1,-0.4 12,-0.9 -4,-0.1 2,-0.3 0.230 95.1 118.9 96.3 -14.0 2.5 -2.8 8.4 20 20 A a E < -B 30 0A 12 -3,-2.1 2,-0.4 10,-0.2 -1,-0.4 -0.637 46.8-158.1 -88.7 145.6 1.2 -2.1 4.9 21 21 A S E -B 29 0A 61 8,-2.8 8,-2.9 -2,-0.3 2,-2.5 -0.959 26.3-123.2-124.4 141.0 -1.7 0.3 4.3 22 22 A b E + 0 0 28 -2,-0.4 3,-0.4 6,-0.3 6,-0.2 -0.261 66.7 131.5 -75.8 52.6 -4.0 0.5 1.4 23 23 A S E + 0 0 87 -2,-2.5 -1,-0.2 1,-0.2 5,-0.1 0.244 70.0 49.1 -89.0 12.5 -3.0 4.1 0.8 24 24 A K E > S-B 27 0A 104 3,-0.9 3,-2.1 -3,-0.2 -1,-0.2 -0.434 103.2-116.5-150.2 65.4 -2.5 3.4 -2.9 25 25 A Y T 3 S+ 0 0 195 -3,-0.4 -14,-0.1 1,-0.4 3,-0.0 -0.146 94.6 20.9 -49.5 138.5 -5.6 1.6 -4.3 26 26 A P T 3 S+ 0 0 96 0, 0.0 -1,-0.4 0, 0.0 2,-0.3 -0.695 124.7 51.9 -99.4 48.6 -5.7 -1.1 -5.3 27 27 A L E < S- B 0 24A 48 -3,-2.1 -3,-0.9 -18,-0.3 2,-0.5 -0.986 73.5-118.9-140.5 150.5 -2.5 -2.0 -3.5 28 28 A c E -C 8 0B 0 -20,-1.2 -20,-1.1 -2,-0.3 2,-0.4 -0.766 26.5-151.2 -90.8 124.7 -1.1 -1.9 0.0 29 29 A A E - B 0 21A 1 -8,-2.9 -8,-2.8 -2,-0.5 2,-1.0 -0.765 15.7-126.1 -96.2 139.2 2.0 0.2 0.5 30 30 A K E AB 2 20A 65 -28,-3.1 -28,-2.1 -2,-0.4 -10,-0.2 -0.747 360.0 360.0 -87.3 103.4 4.5 -0.6 3.2 31 31 A N 0 0 132 -2,-1.0 -1,-0.3 -12,-0.9 -28,-0.1 0.865 360.0 360.0 57.1 360.0 4.9 2.6 5.1