==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 04-APR-06 2GL1 . COMPND 2 MOLECULE: PDF1; . SOURCE 2 ORGANISM_SCIENTIFIC: VIGNA RADIATA; . AUTHOR K.F.LIN,T.R.LEE,P.H.TSAI,M.P.HSU,C.S.CHEN,P.C.LYU . 47 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3383.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 68.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 23.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 8.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 17.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 185 0, 0.0 46,-3.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0-168.6 1.4 9.7 12.4 2 2 A T E -A 46 0A 71 44,-0.3 2,-0.4 42,-0.0 44,-0.2 -0.923 360.0-168.0-113.0 135.4 1.3 7.7 9.4 3 3 A a E -A 45 0A 50 42,-3.4 42,-3.3 -2,-0.4 2,-0.4 -0.925 11.2-158.9-117.5 145.1 4.2 5.9 7.9 4 4 A E E +A 44 0A 41 -2,-0.4 2,-0.3 40,-0.2 40,-0.2 -0.992 17.5 159.9-138.4 133.0 4.0 4.5 4.4 5 5 A N E -A 43 0A 86 38,-2.1 38,-2.9 -2,-0.4 3,-0.1 -0.912 45.2 -73.7-145.1 165.6 6.0 1.8 2.6 6 6 A L E -A 42 0A 46 -2,-0.3 2,-0.4 36,-0.3 36,-0.3 -0.256 49.7-103.0 -66.0 145.7 5.5 -0.4 -0.3 7 7 A A > - 0 0 1 34,-3.2 3,-0.6 1,-0.2 34,-0.2 -0.580 30.7-155.0 -68.2 126.7 3.2 -3.4 -0.2 8 8 A N T 3 S+ 0 0 116 -2,-0.4 -1,-0.2 1,-0.2 -2,-0.1 0.922 88.3 39.3 -75.1 -45.4 5.5 -6.4 0.1 9 9 A T T 3 S+ 0 0 77 14,-0.1 2,-0.9 -3,-0.1 -1,-0.2 0.188 89.8 101.6 -95.9 17.1 3.3 -9.0 -1.4 10 10 A Y < - 0 0 46 -3,-0.6 2,-0.8 31,-0.1 31,-0.2 -0.858 50.2-177.8-103.9 98.9 2.0 -6.9 -4.2 11 11 A R + 0 0 197 -2,-0.9 -3,-0.1 29,-0.1 -2,-0.0 -0.890 48.9 33.3-102.2 108.6 3.9 -7.9 -7.2 12 12 A G S S- 0 0 31 -2,-0.8 29,-0.3 29,-0.0 2,-0.1 -0.692 96.1 -51.2 137.5 172.5 3.0 -5.8 -10.2 13 13 A P - 0 0 77 0, 0.0 2,-0.4 0, 0.0 27,-0.2 -0.443 49.5-132.3 -75.2 154.1 1.8 -2.3 -11.1 14 14 A b + 0 0 1 25,-3.3 3,-0.1 -2,-0.1 -2,-0.0 -0.861 27.5 170.8-107.6 141.6 -1.0 -0.7 -9.3 15 15 A F + 0 0 163 -2,-0.4 2,-0.3 1,-0.3 -1,-0.1 0.554 66.3 33.7-123.5 -19.8 -3.8 1.0 -11.1 16 16 A T >> - 0 0 84 1,-0.1 4,-1.5 23,-0.1 3,-0.8 -0.999 63.3-137.3-144.3 138.5 -6.4 1.7 -8.4 17 17 A T H 3> S+ 0 0 63 -2,-0.3 4,-3.7 1,-0.2 5,-0.3 0.879 104.2 63.3 -61.1 -37.5 -6.3 2.5 -4.7 18 18 A G H 3> S+ 0 0 52 1,-0.2 4,-1.5 2,-0.2 -1,-0.2 0.816 104.3 48.2 -57.3 -30.0 -9.1 0.2 -3.9 19 19 A S H <> S+ 0 0 64 -3,-0.8 4,-1.7 2,-0.2 -1,-0.2 0.919 116.2 42.3 -75.8 -43.7 -6.9 -2.7 -5.1 20 20 A c H X S+ 0 0 0 -4,-1.5 4,-2.8 2,-0.2 -2,-0.2 0.929 113.1 52.0 -68.4 -46.4 -4.0 -1.6 -3.1 21 21 A D H X S+ 0 0 38 -4,-3.7 4,-2.9 12,-0.5 5,-0.3 0.878 108.5 50.4 -63.1 -39.9 -6.0 -0.8 0.1 22 22 A D H X>S+ 0 0 90 -4,-1.5 4,-2.7 -5,-0.3 5,-0.9 0.943 111.8 49.9 -63.3 -42.6 -7.7 -4.2 0.1 23 23 A H H X>S+ 0 0 21 -4,-1.7 5,-2.7 1,-0.2 4,-1.2 0.931 114.0 43.2 -59.0 -49.6 -4.3 -5.7 -0.2 24 24 A d H <5S+ 0 0 0 -4,-2.8 6,-3.3 3,-0.2 -1,-0.2 0.871 124.2 35.5 -69.3 -36.9 -2.8 -3.7 2.6 25 25 A K H <5S+ 0 0 89 -4,-2.9 4,-0.5 4,-0.3 -2,-0.2 0.968 128.2 31.4 -77.8 -58.6 -5.9 -4.1 4.9 26 26 A N H <5S+ 0 0 100 -4,-2.7 -3,-0.2 -5,-0.3 -2,-0.2 0.900 134.9 23.1 -72.5 -44.5 -7.0 -7.7 4.1 27 27 A K T < - 0 0 91 4,-1.8 3,-2.0 -2,-0.9 -22,-0.1 -0.306 35.6 -94.3 -94.7 178.6 0.4 6.3 -5.7 37 37 A D T 3 S+ 0 0 154 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.746 120.3 66.4 -60.2 -26.4 1.9 8.3 -8.6 38 38 A D T 3 S- 0 0 65 2,-0.1 -1,-0.3 1,-0.1 3,-0.1 0.341 112.2-120.4 -80.6 4.4 4.8 5.9 -8.7 39 39 A F S < S+ 0 0 132 -3,-2.0 -25,-3.3 1,-0.2 2,-0.3 0.522 75.7 110.0 69.4 10.0 2.3 3.1 -9.8 40 40 A R S S- 0 0 89 -27,-0.2 -4,-1.8 -25,-0.1 2,-0.5 -0.717 74.1-104.0-111.8 165.4 3.0 0.9 -6.8 41 41 A c E - B 0 35A 1 -29,-0.3 -34,-3.2 -2,-0.3 2,-0.5 -0.776 34.1-169.6 -88.6 124.0 1.0 -0.0 -3.9 42 42 A W E -AB 6 34A 48 -8,-2.6 -8,-3.2 -2,-0.5 2,-0.5 -0.977 11.5-146.1-116.5 127.6 1.9 1.6 -0.7 43 43 A d E -AB 5 33A 2 -38,-2.9 -38,-2.1 -2,-0.5 2,-0.4 -0.799 11.3-143.7 -95.2 132.6 0.5 0.5 2.6 44 44 A T E -AB 4 32A 4 -12,-2.4 -13,-1.3 -2,-0.5 -12,-1.2 -0.738 20.7-175.6 -94.3 139.5 -0.1 3.2 5.2 45 45 A R E -A 3 0A 126 -42,-3.3 -42,-3.4 -2,-0.4 2,-0.3 -0.996 27.5-109.6-138.5 144.7 0.6 2.3 8.8 46 46 A N E A 2 0A 116 -2,-0.4 -44,-0.3 -44,-0.2 -15,-0.0 -0.526 360.0 360.0 -72.7 133.9 0.1 4.1 12.0 47 47 A a 0 0 101 -46,-3.5 -1,-0.0 -2,-0.3 -2,-0.0 -0.764 360.0 360.0-138.9 360.0 3.1 5.2 13.8