==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 20-OCT-01 1GO9 . COMPND 2 MOLECULE: CORTICOTROPIN RELEASING HORMONE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR G.A.SPYROULIAS,S.PAPAZACHARIAS,G.PAIRAS,P.CORDOPATIS . 41 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4594.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 85.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 68.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 132 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -92.9 -20.8 16.4 -20.0 2 2 A E + 0 0 175 3,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.792 360.0 151.2 -82.6 136.8 -18.6 14.6 -22.5 3 3 A E - 0 0 135 -2,-0.4 0, 0.0 0, 0.0 0, 0.0 -0.887 59.8 -65.3-151.7 168.4 -15.3 16.3 -21.9 4 4 A P - 0 0 103 0, 0.0 2,-2.6 0, 0.0 3,-0.3 -0.529 68.7-100.1 -58.5 145.3 -11.6 15.3 -22.3 5 5 A P > + 0 0 93 0, 0.0 4,-2.4 0, 0.0 5,-0.2 -0.396 65.1 160.1 -76.2 72.9 -11.4 12.6 -19.5 6 6 A I H > + 0 0 88 -2,-2.6 4,-2.6 1,-0.3 5,-0.2 0.914 66.3 48.4 -73.3 -44.1 -9.8 15.0 -17.2 7 7 A S H > S+ 0 0 88 -3,-0.3 4,-2.0 1,-0.2 -1,-0.3 0.838 112.8 50.1 -61.7 -36.2 -10.5 13.3 -13.9 8 8 A L H > S+ 0 0 92 2,-0.2 4,-2.0 3,-0.2 -2,-0.2 0.923 110.8 47.6 -71.5 -45.0 -9.2 10.1 -15.3 9 9 A D H X S+ 0 0 120 -4,-2.4 4,-1.2 2,-0.2 -2,-0.2 0.946 113.4 48.0 -62.3 -46.8 -5.9 11.6 -16.6 10 10 A L H >X S+ 0 0 93 -4,-2.6 4,-2.4 1,-0.2 3,-0.6 0.901 107.6 56.0 -60.9 -40.3 -5.3 13.3 -13.3 11 11 A T H 3X S+ 0 0 57 -4,-2.0 4,-1.2 1,-0.2 -1,-0.2 0.880 97.7 64.5 -57.8 -38.0 -6.1 10.0 -11.6 12 12 A X H 3< S+ 0 0 129 -4,-2.0 -1,-0.2 2,-0.2 -2,-0.2 0.898 109.8 38.6 -44.1 -47.9 -3.3 8.7 -13.9 13 13 A H H X< S+ 0 0 149 -4,-1.2 3,-2.2 -3,-0.6 -2,-0.2 0.990 117.5 45.3 -69.6 -62.9 -1.0 11.0 -11.9 14 14 A L H >X S+ 0 0 68 -4,-2.4 4,-2.4 1,-0.3 3,-1.5 0.352 82.6 94.6 -78.5 13.1 -2.4 10.6 -8.4 15 15 A X H 3X>S+ 0 0 18 -4,-1.2 4,-2.3 1,-0.2 5,-2.2 0.798 76.6 68.9 -57.0 -30.6 -2.5 6.8 -8.8 16 16 A R H <45S+ 0 0 171 -3,-2.2 -1,-0.2 3,-0.2 5,-0.2 0.640 107.7 36.9 -65.6 -9.7 0.8 7.3 -7.1 17 17 A E H <>>S+ 0 0 113 -3,-1.5 5,-1.4 3,-0.2 4,-1.0 0.790 124.4 33.9 -96.3 -67.3 -1.4 8.3 -4.1 18 18 A V H <5S+ 0 0 105 -4,-2.4 -3,-0.2 3,-0.2 -2,-0.2 0.636 134.7 23.6 -81.9 -11.0 -4.4 6.0 -4.2 19 19 A L T X5S+ 0 0 107 -4,-2.3 4,-2.1 -5,-0.2 -3,-0.2 0.714 129.5 38.5-115.5 -48.1 -2.6 2.9 -5.6 20 20 A E H >X S+ 0 0 57 -4,-2.2 4,-2.6 2,-0.2 3,-0.5 0.955 114.8 39.9 -76.2 -50.3 3.6 -2.1 5.4 29 29 A Q H 3X S+ 0 0 149 -4,-2.7 4,-2.2 1,-0.2 5,-0.4 0.884 120.0 46.9 -63.9 -38.1 0.8 -3.4 7.7 30 30 A Q H 3< S+ 0 0 119 -4,-2.7 -1,-0.2 -5,-0.2 -2,-0.2 0.514 114.6 48.3 -88.9 -6.6 1.0 -6.8 6.1 31 31 A A H S+ 0 0 94 -5,-0.4 4,-2.6 1,-0.2 -2,-0.2 0.850 114.5 49.9 -62.0 -35.5 2.7 -10.7 9.3 35 35 A R H X S+ 0 0 165 -4,-2.5 4,-2.1 2,-0.2 -1,-0.2 0.760 109.0 52.4 -77.2 -28.7 6.4 -10.5 10.4 36 36 A K H X S+ 0 0 148 -4,-1.9 4,-1.5 -3,-0.3 -2,-0.2 0.941 114.6 41.6 -69.3 -49.1 5.3 -10.1 14.0 37 37 A L H X S+ 0 0 115 -4,-2.5 4,-2.1 2,-0.2 -2,-0.2 0.928 118.6 46.1 -59.5 -47.5 3.1 -13.1 13.8 38 38 A M H < S+ 0 0 130 -4,-2.6 -1,-0.2 1,-0.2 -2,-0.2 0.894 109.3 55.0 -64.6 -42.2 5.7 -15.0 11.9 39 39 A E H < S+ 0 0 142 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.2 0.825 108.2 51.1 -61.0 -30.7 8.4 -13.9 14.3 40 40 A I H < 0 0 146 -4,-1.5 -2,-0.2 1,-0.2 -1,-0.2 0.942 360.0 360.0 -72.3 -47.0 6.2 -15.4 17.1 41 41 A I < 0 0 175 -4,-2.1 -1,-0.2 -5,-0.1 -2,-0.2 -0.059 360.0 360.0 -85.7 360.0 5.8 -18.8 15.4