==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 20-OCT-01 1GOE . COMPND 2 MOLECULE: CORTICOTROPIN RELEASING HORMONE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR G.A.SPYROULIAS,S.PAPAZACHARIAS,G.PAIRAS,P.CORDOPATIS . 41 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4621.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 90.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 14.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 65.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 172 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 97.0 -19.9 9.1 -20.4 2 2 A E + 0 0 203 1,-0.6 0, 0.0 2,-0.1 0, 0.0 0.225 360.0 60.9-153.0 -56.6 -20.2 12.5 -22.2 3 3 A E S S- 0 0 164 1,-0.1 -1,-0.6 2,-0.0 0, 0.0 -0.346 95.1 -88.7 -79.3 163.6 -17.2 14.7 -21.2 4 4 A P - 0 0 90 0, 0.0 2,-2.3 0, 0.0 3,-0.4 -0.197 48.7 -91.7 -67.7 165.6 -13.6 13.7 -21.9 5 5 A P S > S+ 0 0 90 0, 0.0 4,-2.5 0, 0.0 5,-0.2 -0.302 74.3 138.4 -78.7 59.6 -11.6 11.6 -19.4 6 6 A I H > S+ 0 0 88 -2,-2.3 4,-2.6 1,-0.2 5,-0.3 0.949 73.0 44.1 -73.0 -45.7 -10.2 14.6 -17.6 7 7 A S H > S+ 0 0 90 -3,-0.4 4,-1.4 1,-0.2 -1,-0.2 0.784 115.5 49.4 -69.8 -27.6 -10.7 13.2 -14.1 8 8 A L H > S+ 0 0 99 2,-0.2 4,-1.6 3,-0.1 -2,-0.2 0.936 111.2 48.4 -74.7 -48.2 -9.4 9.8 -15.2 9 9 A D H >X S+ 0 0 111 -4,-2.5 4,-0.8 2,-0.2 3,-0.7 0.950 114.2 45.0 -57.7 -52.9 -6.2 11.3 -16.9 10 10 A L H >X S+ 0 0 101 -4,-2.6 4,-1.6 1,-0.3 3,-0.9 0.910 106.8 60.4 -60.2 -41.0 -5.4 13.5 -13.8 11 11 A T H 3X S+ 0 0 62 -4,-1.4 4,-1.3 -5,-0.3 -1,-0.3 0.851 91.0 70.9 -55.2 -33.6 -6.1 10.5 -11.6 12 12 A X H X< S+ 0 0 142 -4,-1.6 3,-0.7 -3,-0.7 4,-0.5 0.923 102.7 41.8 -42.8 -51.8 -3.2 8.8 -13.6 13 13 A H H X< S+ 0 0 157 -3,-0.9 3,-1.6 -4,-0.8 -1,-0.2 0.961 114.9 50.3 -61.7 -47.4 -0.8 11.1 -11.8 14 14 A L H >X S+ 0 0 77 -4,-1.6 4,-2.3 1,-0.3 3,-1.6 0.497 86.0 85.4 -76.2 -3.9 -2.6 10.6 -8.5 15 15 A X H S+ 0 0 23 -4,-1.3 4,-2.1 -3,-0.7 5,-1.7 0.836 79.7 67.4 -62.6 -31.1 -2.5 6.8 -8.9 16 16 A R H <45S+ 0 0 189 -3,-1.6 -1,-0.3 -4,-0.5 -2,-0.2 0.382 110.1 36.5 -71.5 13.2 0.9 7.3 -7.3 17 17 A E H <>>S+ 0 0 111 -3,-1.6 5,-1.3 3,-0.2 4,-1.0 0.567 122.8 36.1-121.4 -61.3 -1.1 8.2 -4.2 18 18 A V H <5S+ 0 0 113 -4,-2.3 -3,-0.2 3,-0.2 -2,-0.2 0.629 135.1 26.4 -79.6 -8.7 -4.2 6.0 -4.2 19 19 A L T X5S+ 0 0 101 -4,-2.1 4,-1.9 -5,-0.3 -3,-0.2 0.688 128.0 40.7-118.5 -43.5 -2.3 3.0 -5.5 20 20 A E H >X S+ 0 0 57 -4,-2.3 4,-2.7 2,-0.2 3,-0.7 0.928 114.0 43.3 -86.2 -49.1 3.6 -2.2 5.3 29 29 A Q H 3X S+ 0 0 145 -4,-2.6 4,-2.3 1,-0.2 5,-0.4 0.890 120.2 45.2 -58.0 -39.4 0.8 -3.3 7.5 30 30 A Q H 3< S+ 0 0 127 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.457 112.6 52.2 -92.6 0.3 1.1 -6.8 6.0 31 31 A A H <> S+ 0 0 53 -3,-0.7 4,-2.1 3,-0.1 -2,-0.2 0.854 120.5 30.0 -87.1 -54.0 4.9 -6.7 6.4 32 32 A H H X S+ 0 0 121 -4,-2.7 4,-2.1 2,-0.2 5,-0.2 0.880 123.8 47.3 -82.8 -40.0 5.0 -5.7 10.1 33 33 A S H X S+ 0 0 78 -4,-2.3 4,-2.5 -5,-0.4 3,-0.3 0.983 118.7 42.5 -58.2 -54.4 1.8 -7.5 11.0 34 34 A N H > S+ 0 0 88 -5,-0.4 4,-2.6 1,-0.3 -2,-0.2 0.867 115.9 49.6 -61.8 -37.7 2.9 -10.6 9.1 35 35 A R H X S+ 0 0 124 -4,-2.1 4,-2.1 2,-0.2 -1,-0.3 0.807 111.4 48.3 -69.5 -35.9 6.5 -10.2 10.5 36 36 A K H X S+ 0 0 162 -4,-2.1 4,-0.8 -3,-0.3 -2,-0.2 0.912 117.2 41.6 -73.9 -41.8 5.2 -9.9 14.1 37 37 A L H X S+ 0 0 112 -4,-2.5 4,-1.7 2,-0.2 3,-0.4 0.921 119.6 43.7 -65.7 -48.4 2.9 -12.9 13.8 38 38 A M H < S+ 0 0 112 -4,-2.6 -2,-0.2 -5,-0.3 -3,-0.2 0.867 104.8 63.1 -71.8 -35.1 5.5 -14.9 11.9 39 39 A E H < S+ 0 0 123 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.838 104.9 49.5 -56.0 -30.8 8.2 -13.8 14.3 40 40 A I H < 0 0 134 -4,-0.8 -2,-0.2 -3,-0.4 -1,-0.2 0.932 360.0 360.0 -75.6 -45.6 6.1 -15.7 16.9 41 41 A I < 0 0 166 -4,-1.7 -1,-0.3 -5,-0.1 -2,-0.1 -0.434 360.0 360.0 -82.0 360.0 5.8 -18.8 14.7