==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 11-MAY-99 2GP8 . COMPND 2 MOLECULE: PROTEIN (SCAFFOLDING PROTEIN); . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE P22; . AUTHOR Y.SUN,M.H.PARKER,P.WEIGELE,S.CASJENS,P.E.PREVELIGE JR., . 40 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3903.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 87.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 62.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 264 A I 0 0 198 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 142.2 -16.5 2.6 12.2 2 265 A T + 0 0 142 1,-0.2 2,-0.8 2,-0.0 0, 0.0 0.036 360.0 117.3 -88.8 30.8 -14.5 -0.3 10.8 3 266 A G + 0 0 43 1,-0.1 2,-1.2 2,-0.0 5,-0.2 -0.239 25.6 139.0 -91.4 49.7 -15.7 0.4 7.3 4 267 A D > + 0 0 101 -2,-0.8 5,-1.3 3,-0.1 -1,-0.1 -0.268 30.0 173.7 -88.2 53.1 -12.1 1.1 6.0 5 268 A V T >>5 - 0 0 100 -2,-1.2 4,-1.6 3,-0.2 3,-1.3 0.118 62.6 -61.6 -48.4 176.9 -12.7 -0.8 2.7 6 269 A S H 3>>S+ 0 0 59 1,-0.3 4,-2.7 2,-0.2 5,-0.5 0.822 136.2 71.9 -33.8 -37.5 -9.9 -0.6 0.1 7 270 A A H 3>5S+ 0 0 79 2,-0.2 4,-1.5 1,-0.2 -1,-0.3 0.959 112.8 22.5 -45.9 -62.8 -10.6 3.1 0.2 8 271 A A H <>5S+ 0 0 25 -3,-1.3 4,-2.1 -5,-0.2 -2,-0.2 0.979 125.9 52.1 -71.3 -55.5 -9.0 3.5 3.6 9 272 A N H X< S+ 0 0 4 -4,-2.6 3,-1.0 -5,-0.4 2,-1.0 0.971 114.7 20.0 -75.0 -78.6 9.6 2.8 -1.5 22 285 A S T 3< S+ 0 0 113 -4,-1.8 -1,-0.2 1,-0.2 -2,-0.1 -0.142 115.0 75.6 -84.9 44.8 11.8 5.9 -2.1 23 286 A K T 3 S- 0 0 167 -2,-1.0 -1,-0.2 -3,-0.4 -2,-0.1 0.404 111.9 -97.6-131.3 -3.2 13.7 5.3 1.2 24 287 A G S < S+ 0 0 65 -3,-1.0 2,-2.4 -4,-0.2 3,-0.4 -0.251 106.6 90.5 113.3 -46.4 16.0 2.4 0.3 25 288 A D > + 0 0 95 1,-0.2 4,-1.1 -6,-0.2 3,-0.3 -0.273 43.6 147.8 -79.3 57.3 14.0 -0.5 1.7 26 289 A V H > + 0 0 61 -2,-2.4 4,-3.1 1,-0.2 5,-0.2 0.738 51.1 85.3 -65.9 -18.3 12.2 -0.9 -1.6 27 290 A E H > S+ 0 0 155 -3,-0.4 4,-1.7 1,-0.2 -1,-0.2 0.963 95.7 36.0 -46.4 -70.0 12.0 -4.7 -0.9 28 291 A T H > S+ 0 0 62 -3,-0.3 4,-2.5 1,-0.2 5,-0.3 0.934 115.4 59.2 -51.1 -46.5 8.8 -4.4 1.1 29 292 A Y H X S+ 0 0 65 -4,-1.1 4,-3.3 -9,-0.3 5,-0.2 0.964 104.4 48.4 -47.8 -63.6 7.6 -1.7 -1.3 30 293 A R H X S+ 0 0 191 -4,-3.1 4,-2.5 2,-0.2 -1,-0.2 0.944 113.8 46.4 -42.6 -65.8 7.8 -3.9 -4.3 31 294 A K H X S+ 0 0 168 -4,-1.7 4,-1.8 -5,-0.2 5,-0.2 0.945 114.7 46.2 -42.9 -67.1 5.9 -6.8 -2.6 32 295 A L H X S+ 0 0 45 -4,-2.5 4,-2.9 1,-0.2 5,-0.3 0.934 110.1 55.4 -42.9 -56.5 3.2 -4.5 -1.3 33 296 A K H X S+ 0 0 111 -4,-3.3 4,-2.4 -5,-0.3 5,-0.2 0.943 105.8 51.6 -43.2 -60.7 2.9 -2.8 -4.7 34 297 A A H >X S+ 0 0 61 -4,-2.5 3,-1.2 -5,-0.2 4,-0.6 0.944 112.5 44.6 -42.4 -66.1 2.3 -6.2 -6.4 35 298 A K H >X S+ 0 0 168 -4,-1.8 3,-4.2 1,-0.3 4,-1.8 0.949 110.4 54.2 -44.9 -59.1 -0.5 -7.1 -4.0 36 299 A L H 3< S+ 0 0 37 -4,-2.9 -1,-0.3 1,-0.3 -2,-0.2 0.852 103.3 58.6 -46.3 -33.7 -2.0 -3.6 -4.2 37 300 A K H << S+ 0 0 182 -4,-2.4 -1,-0.3 -3,-1.2 -2,-0.2 0.619 114.4 36.5 -73.8 -8.6 -2.1 -4.2 -8.0 38 301 A G H << S+ 0 0 57 -3,-4.2 2,-0.3 -4,-0.6 -2,-0.2 0.493 78.6 131.2-118.0 -9.9 -4.3 -7.3 -7.3 39 302 A I < 0 0 70 -4,-1.8 -3,-0.0 -5,-0.2 -4,-0.0 -0.210 360.0 360.0 -47.4 102.9 -6.4 -5.9 -4.5 40 303 A R 0 0 274 -2,-0.3 -1,-0.1 -34,-0.0 -4,-0.0 0.984 360.0 360.0 -57.0 360.0 -9.8 -6.9 -5.8