==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 20-APR-06 2GQC . COMPND 2 MOLECULE: RHOMBOID INTRAMEMBRANE PROTEASE; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS AERUGINOSA; . AUTHOR K.DUTTA,A.DEL RIO,J.CHAVEZ,I.UBARRETXENA-BELANDIA,R.GHOSE . 70 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4783.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 61.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 17.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 207 0, 0.0 43,-0.1 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 104.5 13.9 7.2 -5.8 2 2 A S + 0 0 99 1,-0.1 2,-0.3 41,-0.1 28,-0.2 0.786 360.0 108.1 59.7 30.1 10.1 6.8 -5.2 3 3 A A + 0 0 23 39,-0.1 2,-0.5 26,-0.1 39,-0.1 -0.772 33.2 153.4-142.0 92.6 10.8 3.8 -3.0 4 4 A V - 0 0 51 -2,-0.3 2,-0.6 -3,-0.0 38,-0.5 -0.983 46.5-121.1-122.5 120.6 10.4 4.1 0.7 5 5 A Q E S+A 41 0A 82 -2,-0.5 36,-0.2 1,-0.2 3,-0.1 -0.466 70.7 115.6 -61.8 110.2 9.6 1.1 2.8 6 6 A V E + 0 0 13 34,-1.2 2,-0.3 -2,-0.6 -1,-0.2 0.412 61.8 55.7-146.4 -30.5 6.2 2.0 4.3 7 7 A L E +A 40 0A 0 33,-2.1 33,-2.5 -3,-0.4 -1,-0.4 -0.778 57.4 178.7-115.7 151.0 3.7 -0.4 3.0 8 8 A K E -A 39 0A 65 31,-0.3 31,-0.3 -2,-0.3 25,-0.1 -0.982 25.5-144.1-151.2 148.3 3.7 -4.2 3.0 9 9 A F E -A 38 0A 0 29,-2.6 29,-0.8 -2,-0.3 6,-0.1 -0.870 39.7-117.1-115.3 91.0 1.4 -7.0 1.9 10 10 A P > > - 0 0 27 0, 0.0 3,-2.2 0, 0.0 5,-0.6 0.007 25.9-166.9 -28.0 96.5 1.8 -9.7 4.5 11 11 A L T 3 5S+ 0 0 63 1,-0.3 26,-0.1 3,-0.1 28,-0.0 0.624 87.5 60.1 -69.7 -10.4 3.2 -12.6 2.5 12 12 A S T 3 5S+ 0 0 103 24,-0.2 -1,-0.3 26,-0.1 2,-0.2 0.328 107.8 44.2 -98.1 3.1 2.4 -14.7 5.4 13 13 A V T < 5S- 0 0 85 -3,-2.2 2,-2.6 -4,-0.1 3,-0.2 -0.729 107.6 -71.1-135.9-175.8 -1.4 -14.0 5.3 14 14 A D T > 5 + 0 0 141 -2,-0.2 3,-1.7 1,-0.2 4,-0.2 -0.385 60.6 163.9 -77.7 60.4 -4.3 -13.7 3.0 15 15 A L G >>X + 0 0 33 -2,-2.6 4,-3.1 -5,-0.6 3,-1.1 0.579 47.4 98.4 -58.6 -12.3 -2.8 -10.5 1.7 16 16 A A G 345S+ 0 0 61 1,-0.3 -1,-0.3 3,-0.2 4,-0.1 0.766 81.0 57.2 -51.2 -24.2 -5.1 -10.7 -1.3 17 17 A G G <>5S+ 0 0 51 -3,-1.7 4,-0.6 3,-0.2 -1,-0.3 0.907 122.3 20.8 -71.9 -42.3 -7.2 -8.3 0.6 18 18 A F H <>5S+ 0 0 44 -3,-1.1 4,-1.9 -4,-0.2 5,-0.4 0.892 126.9 46.5 -95.3 -48.2 -4.4 -5.7 1.0 19 19 A V H X5S+ 0 0 34 -4,-3.1 4,-1.5 1,-0.2 -3,-0.2 0.902 119.7 46.0 -61.7 -35.5 -2.0 -6.5 -1.8 20 20 A G H >S+ 0 0 1 -4,-1.9 5,-2.1 2,-0.2 4,-1.7 0.758 116.0 62.4 -90.5 -24.8 -3.6 -1.2 -3.8 23 23 A R H <5S+ 0 0 153 -4,-1.5 -2,-0.2 -5,-0.4 -1,-0.2 0.754 106.2 50.8 -62.7 -24.3 -2.9 -3.4 -6.7 24 24 A R T <5S+ 0 0 178 -4,-1.8 -1,-0.2 1,-0.1 -2,-0.2 0.723 103.3 59.6 -80.3 -25.6 -6.5 -2.6 -7.4 25 25 A L T 45S- 0 0 26 -4,-0.4 -2,-0.2 -5,-0.2 -1,-0.1 0.902 138.3 -60.9 -77.0 -41.0 -5.8 1.1 -7.1 26 26 A N T <5 - 0 0 86 -4,-1.7 -3,-0.2 0, 0.0 -2,-0.1 0.240 55.6-133.5 172.3 -7.0 -3.2 1.5 -9.8 27 27 A V < + 0 0 72 -5,-2.1 -4,-0.1 1,-0.2 -5,-0.0 0.847 49.9 149.7 32.1 64.4 -0.4 -0.9 -8.6 28 28 A P + 0 0 69 0, 0.0 -1,-0.2 0, 0.0 2,-0.1 0.024 40.0 104.2-103.6 24.8 2.4 1.7 -9.3 29 29 A H S S- 0 0 32 -7,-0.1 2,-0.5 -26,-0.0 13,-0.2 -0.449 72.5-103.4-116.7 172.6 4.7 0.4 -6.6 30 30 A R E -B 41 0A 125 11,-1.2 11,-1.8 -28,-0.2 2,-0.5 -0.852 27.8-158.1 -94.6 128.0 7.8 -1.6 -5.7 31 31 A V E +B 40 0A 79 -2,-0.5 2,-0.3 9,-0.2 9,-0.2 -0.946 24.0 156.5-104.9 121.2 7.3 -5.0 -4.2 32 32 A S E -B 39 0A 31 7,-2.9 7,-1.6 -2,-0.5 2,-1.0 -0.969 42.6-123.9-147.8 130.2 10.2 -6.4 -2.2 33 33 A E E -B 38 0A 138 -2,-0.3 2,-0.6 5,-0.3 5,-0.3 -0.605 33.5-171.1 -82.0 102.6 10.2 -9.1 0.5 34 34 A E E > -B 37 0A 77 3,-2.2 2,-2.5 -2,-1.0 3,-1.8 -0.860 58.8 -42.0-105.4 114.0 11.7 -7.5 3.5 35 35 A S T 3 S- 0 0 146 -2,-0.6 -1,-0.1 1,-0.3 3,-0.1 -0.042 129.4 -26.7 69.9 -38.0 12.5 -9.6 6.6 36 36 A G T 3 S+ 0 0 41 -2,-2.5 2,-0.4 1,-0.5 -1,-0.3 0.348 122.6 74.4 169.8 4.7 9.3 -11.5 6.4 37 37 A Q E < S- B 0 34A 80 -3,-1.8 -3,-2.2 -27,-0.1 -1,-0.5 -0.987 79.5-114.4-130.1 143.6 6.6 -9.5 4.6 38 38 A Q E -AB 9 33A 50 -29,-0.8 -29,-2.6 -2,-0.4 2,-0.4 -0.638 46.1-148.5 -68.9 136.1 6.3 -8.6 1.0 39 39 A V E -AB 8 32A 2 -7,-1.6 -7,-2.9 -2,-0.3 2,-0.5 -0.910 16.4-153.6-128.6 142.6 6.8 -4.9 1.0 40 40 A L E -AB 7 31A 1 -33,-2.5 -33,-2.1 -2,-0.4 -34,-1.2 -0.929 9.3-172.1-118.9 127.7 5.6 -2.1 -1.0 41 41 A W E +AB 5 30A 47 -11,-1.8 -11,-1.2 -2,-0.5 -36,-0.2 -0.934 33.8 123.5-127.1 103.1 7.4 1.1 -1.5 42 42 A V + 0 0 29 -38,-0.5 -39,-0.1 -2,-0.5 -1,-0.1 0.330 54.0 78.0-136.8 13.7 5.9 4.2 -3.2 43 43 A P - 0 0 5 0, 0.0 -41,-0.1 0, 0.0 -38,-0.0 0.169 60.5-138.9 -95.0-142.3 6.0 7.2 -0.8 44 44 A D - 0 0 81 -42,-0.1 -41,-0.1 -41,-0.1 -42,-0.0 0.352 59.6 -72.2-142.4 -68.9 8.7 9.7 0.3 45 45 A E S S+ 0 0 135 -41,-0.1 4,-0.4 -39,-0.0 -41,-0.0 0.038 132.3 30.2-171.2 -55.1 8.5 10.5 4.0 46 46 A R S >> S+ 0 0 156 2,-0.2 4,-0.9 1,-0.1 3,-0.7 0.796 120.8 56.1 -84.0 -32.5 5.4 12.6 4.5 47 47 A L H 3> S+ 0 0 62 1,-0.2 4,-2.7 2,-0.2 5,-0.1 0.830 89.2 80.1 -64.2 -32.1 3.9 10.8 1.5 48 48 A A H 3> S+ 0 0 13 1,-0.3 4,-1.7 2,-0.2 5,-0.4 0.841 95.8 42.1 -43.7 -46.2 4.5 7.5 3.4 49 49 A E H <> S+ 0 0 135 -3,-0.7 4,-1.6 -4,-0.4 5,-0.5 0.914 115.0 49.8 -73.4 -42.2 1.4 8.0 5.5 50 50 A Q H X>S+ 0 0 74 -4,-0.9 4,-0.9 3,-0.2 5,-0.6 0.846 108.6 57.2 -63.1 -31.6 -0.7 9.2 2.7 51 51 A V H X5S+ 0 0 0 -4,-2.7 4,-1.0 3,-0.2 -2,-0.2 0.983 121.5 16.4 -74.7 -57.7 0.4 6.2 0.6 52 52 A R H X5S+ 0 0 81 -4,-1.7 4,-1.4 2,-0.2 -2,-0.2 0.917 128.8 49.0 -83.6 -38.1 -0.6 3.2 2.6 53 53 A E H <5S+ 0 0 60 -4,-1.6 -3,-0.2 -5,-0.4 -2,-0.2 0.730 122.2 31.5 -80.1 -24.0 -3.0 4.8 5.1 54 54 A L H >X5S+ 0 0 59 -4,-0.9 4,-3.7 -5,-0.5 3,-1.6 0.743 112.9 59.0-102.6 -27.4 -5.0 6.6 2.5 55 55 A Y H 3<S+ 0 0 6 -6,-0.7 5,-1.0 -5,-0.5 6,-0.9 0.755 120.1 58.8 -98.3 -29.9 -9.4 3.3 -3.0 61 61 A G T 5S+ 0 0 7 -7,-0.5 -1,-0.2 4,-0.1 -5,-0.1 0.073 91.5 114.7 -79.1 24.5 -12.1 4.2 -0.5 62 62 A D T > 5S- 0 0 88 -3,-0.3 3,-0.6 1,-0.1 -2,-0.0 -0.240 99.0 -80.0 -82.0 174.5 -13.0 6.7 -3.1 63 63 A P T 3 5S+ 0 0 130 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.542 124.1 79.4 -48.9 -6.5 -16.2 6.8 -5.2 64 64 A Q T 3 5S- 0 0 116 -5,-0.2 -3,-0.1 2,-0.1 -4,-0.1 0.991 113.8 -63.5 -66.8 -63.8 -14.2 4.2 -7.1 65 65 A A S <