==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 20-APR-06 2GQE . COMPND 2 MOLECULE: NUCLEAR PORE COMPLEX PROTEIN NUP153; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.M.HIGA,S.L.ALAM,W.I.SUNDQUIST,K.S.ULLMAN . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2800.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 7 21.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A G 0 0 121 0, 0.0 2,-0.4 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 10.4 -13.1 7.3 3.6 2 1 A H - 0 0 159 3,-0.0 0, 0.0 1,-0.0 0, 0.0 -0.960 360.0 -25.3-144.9 123.0 -16.2 5.1 3.4 3 2 A M S S+ 0 0 161 -2,-0.4 -1,-0.0 1,-0.1 0, 0.0 0.861 100.5 116.2 42.6 43.6 -16.4 1.3 3.6 4 3 A V + 0 0 63 3,-0.0 -1,-0.1 14,-0.0 16,-0.1 0.162 36.1 136.2-122.7 14.5 -12.9 1.2 2.3 5 4 A I + 0 0 138 1,-0.2 -3,-0.0 13,-0.1 13,-0.0 0.185 23.2 95.1 -51.6-179.1 -11.2 -0.4 5.3 6 5 A G + 0 0 52 1,-0.2 -1,-0.2 12,-0.1 11,-0.1 0.346 49.0 165.3 110.5 -3.8 -8.7 -3.2 5.0 7 6 A T - 0 0 65 -3,-0.1 2,-0.4 1,-0.1 11,-0.3 -0.100 29.7-134.6 -46.3 140.0 -5.6 -1.0 5.1 8 7 A W E -A 17 0A 39 9,-2.0 9,-1.9 7,-0.0 2,-0.4 -0.822 8.4-134.2-104.7 141.7 -2.4 -3.0 5.7 9 8 A D E -A 16 0A 90 -2,-0.4 7,-0.2 7,-0.2 15,-0.0 -0.773 22.0-122.0 -96.5 136.3 0.3 -2.1 8.1 10 9 A C - 0 0 13 5,-1.8 -1,-0.1 -2,-0.4 6,-0.0 -0.044 10.0-155.6 -65.5 174.0 4.0 -2.2 7.1 11 10 A D S S+ 0 0 154 3,-0.1 -1,-0.1 4,-0.0 -2,-0.0 0.184 87.8 39.5-137.5 12.1 6.6 -4.3 8.9 12 11 A T S S+ 0 0 113 3,-0.1 -2,-0.0 17,-0.0 0, 0.0 0.574 131.0 18.4-130.4 -36.7 9.8 -2.5 8.0 13 12 A C S S- 0 0 44 2,-0.1 -3,-0.0 16,-0.0 0, 0.0 0.457 99.1-122.8-116.0 -8.9 8.9 1.2 8.2 14 13 A L + 0 0 148 1,-0.2 2,-0.3 -5,-0.0 -3,-0.1 0.998 58.8 138.5 62.0 75.5 5.8 0.9 10.3 15 14 A V - 0 0 41 -7,-0.0 -5,-1.8 2,-0.0 -1,-0.2 -0.961 45.7-132.5-153.4 131.8 3.2 2.6 8.0 16 15 A Q E -A 9 0A 118 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -0.511 26.9-178.7 -83.2 151.6 -0.4 1.8 7.1 17 16 A N E -A 8 0A 11 -9,-1.9 -9,-2.0 -2,-0.2 7,-0.1 -0.971 31.3 -91.4-147.4 160.1 -1.7 1.8 3.5 18 17 A K > - 0 0 116 -2,-0.3 3,-1.6 -11,-0.3 -13,-0.1 -0.416 28.8-127.8 -73.5 147.3 -4.8 1.3 1.5 19 18 A P T 3 S+ 0 0 33 0, 0.0 -1,-0.1 0, 0.0 -14,-0.1 0.586 107.3 67.6 -69.8 -9.7 -5.6 -2.3 0.2 20 19 A E T 3 S+ 0 0 129 -16,-0.1 2,-0.1 2,-0.0 -2,-0.0 0.524 88.2 86.5 -87.2 -7.2 -6.1 -0.7 -3.3 21 20 A A < - 0 0 22 -3,-1.6 3,-0.1 1,-0.1 -4,-0.0 -0.358 68.0-146.8 -88.1 171.0 -2.4 0.1 -3.4 22 21 A I S S+ 0 0 129 1,-0.1 9,-2.4 -2,-0.1 2,-0.2 0.603 78.4 10.8-110.6 -21.3 0.4 -2.1 -4.6 23 22 A K B S-B 30 0B 106 7,-0.2 -1,-0.1 1,-0.1 -2,-0.0 -0.836 93.3 -65.2-145.3-178.2 3.2 -0.9 -2.3 24 23 A C - 0 0 5 5,-1.5 -2,-0.1 -2,-0.2 -7,-0.1 -0.315 29.0-142.8 -72.6 157.6 3.8 1.2 0.8 25 24 A V S S+ 0 0 121 -9,-0.2 -1,-0.1 3,-0.1 -9,-0.1 0.121 97.7 34.1-106.8 18.5 3.2 5.0 0.8 26 25 A A S S+ 0 0 59 -11,-0.1 -1,-0.0 3,-0.0 -10,-0.0 0.535 135.3 15.9-135.8 -43.8 6.2 5.8 3.0 27 26 A C S S- 0 0 40 -12,-0.1 -2,-0.1 2,-0.1 -12,-0.0 0.495 95.1-123.6-112.8 -11.5 9.0 3.3 2.2 28 27 A E + 0 0 138 1,-0.2 -3,-0.1 -5,-0.0 0, 0.0 0.933 46.0 175.5 67.0 47.4 7.6 2.0 -1.1 29 28 A T - 0 0 40 1,-0.1 -5,-1.5 0, 0.0 2,-0.6 -0.612 38.0-102.7 -88.0 145.3 7.6 -1.6 -0.0 30 29 A P B -B 23 0B 108 0, 0.0 -7,-0.2 0, 0.0 -1,-0.1 -0.533 40.7-120.3 -69.8 112.8 6.1 -4.4 -2.2 31 30 A K 0 0 77 -9,-2.4 -8,-0.0 -2,-0.6 -21,-0.0 -0.164 360.0 360.0 -52.9 143.1 2.7 -5.3 -0.9 32 31 A P 0 0 147 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 -0.400 360.0 360.0 -69.8 360.0 2.3 -9.0 0.2