==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 18-OCT-93 1GRM . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR A.S.ARSENIEV,I.L.BARSUKOV,A.L.LOMIZE,V.Y.OREKHOV,V.F.BYSTROV . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2755.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 93.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 81 0, 0.0 20,-3.0 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 108.3 -3.5 0.4 2.1 2 2 A G E -aB 8 20A 19 5,-2.4 7,-1.0 18,-0.2 2,-0.3 -0.564 360.0 -14.5 157.4 -84.4 -3.4 0.9 5.8 3 3 A A E S+aB 9 19A 36 16,-1.7 16,-1.7 5,-0.2 2,-0.5 -0.987 98.8 39.7-153.4 144.4 -0.3 2.5 7.3 4 4 A X E S-aB 10 18A 86 5,-1.7 7,-2.3 -2,-0.3 2,-0.5 -0.986 105.2 -5.6 125.5-124.3 3.2 3.3 6.1 5 5 A A E S+a 11 0A 30 12,-3.0 2,-0.4 -2,-0.5 7,-0.2 -0.956 116.1 23.8-115.7 119.7 3.9 4.6 2.6 6 6 A X E S+a 12 0A 57 5,-2.0 7,-2.0 -2,-0.5 2,-0.4 -0.957 112.2 5.0 138.9-116.1 1.1 4.8 0.1 7 7 A V E S+a 13 0A 57 -2,-0.4 -5,-2.4 5,-0.1 2,-0.4 -0.883 106.8 34.1-109.8 139.0 -2.6 5.1 1.2 8 8 A X E S-a 2 0A 50 5,-0.6 7,-1.4 -2,-0.4 2,-0.4 -0.992 107.1 -21.0 129.5-125.4 -3.7 5.4 4.7 9 9 A W E S+a 3 0A 162 -7,-1.0 -5,-1.7 -2,-0.4 2,-0.3 -0.991 105.7 43.2-128.3 133.0 -1.8 7.3 7.4 10 10 A X E S-a 4 0A 57 5,-2.5 2,-0.3 -2,-0.4 -5,-0.2 -0.876 103.6 -12.0 143.8-105.8 1.9 8.2 7.3 11 11 A W E S+a 5 0A 167 -7,-2.3 -5,-2.0 -2,-0.3 2,-0.8 -0.912 106.5 37.7-130.7 157.1 3.5 9.4 4.1 12 12 A X E S-a 6 0A 109 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.1 -0.852 112.2 -14.3 110.5 -94.8 2.3 9.6 0.5 13 13 A W E S+a 7 0A 169 -7,-2.0 2,-0.7 -2,-0.8 -5,-0.6 -0.966 108.2 39.5-143.6 156.3 -1.3 10.4 0.5 14 14 A X E a 8 0A 104 -2,-0.3 -5,-0.2 -7,-0.2 -7,-0.1 -0.900 360.0 360.0 112.1-102.9 -4.2 10.5 3.0 15 15 A W 0 0 194 -7,-1.4 -5,-2.5 -2,-0.7 -2,-0.1 -0.889 360.0 360.0-140.7 360.0 -3.0 11.8 6.4 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 80 0, 0.0 -12,-3.0 0, 0.0 7,-0.2 0.000 360.0 360.0 360.0 108.3 3.5 -0.5 2.0 18 2 B G E -Bc 4 24A 19 5,-2.4 7,-1.0 -14,-0.2 2,-0.3 -0.565 360.0 -14.6 157.4 -84.5 3.3 -0.9 5.8 19 3 B A E S+Bc 3 25A 36 -16,-1.7 -16,-1.7 5,-0.2 2,-0.5 -0.987 98.8 39.8-153.4 144.3 0.3 -2.5 7.3 20 4 B X E S-Bc 2 26A 86 5,-1.7 7,-2.3 -2,-0.3 2,-0.5 -0.986 105.2 -5.6 125.6-124.2 -3.2 -3.3 6.1 21 5 B A E S+ c 0 27A 31 -20,-3.0 2,-0.4 -2,-0.5 7,-0.2 -0.956 116.1 23.8-115.8 119.6 -4.0 -4.6 2.6 22 6 B X E S+ c 0 28A 57 5,-2.0 7,-2.0 -2,-0.5 2,-0.4 -0.957 112.2 5.0 138.8-116.2 -1.1 -4.8 0.1 23 7 B V E S+ c 0 29A 57 -2,-0.4 -5,-2.4 5,-0.1 2,-0.4 -0.883 106.8 34.0-109.8 139.0 2.5 -5.1 1.1 24 8 B X E S-cc 18 30A 50 5,-0.6 7,-1.4 -2,-0.4 2,-0.4 -0.992 107.1 -21.0 129.5-125.4 3.7 -5.4 4.7 25 9 B W E S+c 19 0A 162 -7,-1.0 -5,-1.7 -2,-0.4 2,-0.3 -0.991 105.7 43.2-128.3 133.0 1.8 -7.3 7.4 26 10 B X E S-c 20 0A 57 5,-2.5 2,-0.3 -2,-0.4 -5,-0.2 -0.877 103.6 -12.0 143.8-105.8 -1.9 -8.2 7.3 27 11 B W E S+c 21 0A 167 -7,-2.3 -5,-2.0 -2,-0.3 2,-0.8 -0.912 106.5 37.7-130.7 157.1 -3.5 -9.4 4.2 28 12 B X E S-c 22 0A 109 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.1 -0.851 112.2 -14.3 110.5 -94.8 -2.4 -9.6 0.6 29 13 B W E S+c 23 0A 170 -7,-2.0 2,-0.7 -2,-0.8 -5,-0.6 -0.966 108.2 39.5-143.6 156.2 1.3 -10.5 0.5 30 14 B X E c 24 0A 103 -2,-0.3 -5,-0.2 -7,-0.2 -7,-0.1 -0.900 360.0 360.0 112.1-102.9 4.1 -10.5 3.0 31 15 B W 0 0 193 -7,-1.4 -5,-2.5 -2,-0.7 -2,-0.1 -0.889 360.0 360.0-140.7 360.0 3.0 -11.8 6.3