==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 22-MAY-06 2H3O . COMPND 2 MOLECULE: MERF; . SOURCE 2 ORGANISM_SCIENTIFIC: MORGANELLA MORGANII; . AUTHOR S.J.OPELLA,A.A.DE ANGELIS,S.C.HOWELL,A.A.NEVZOROV . 43 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2332.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 79.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 62.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 27 A L > 0 0 114 0, 0.0 4,-1.4 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -33.3 -0.4 -3.3 1.9 2 28 A V H > + 0 0 46 2,-0.2 4,-2.5 3,-0.1 34,-0.2 0.887 360.0 51.6 -70.8 -41.3 3.3 -3.7 2.6 3 29 A I H >>S+ 0 0 57 2,-0.2 4,-4.4 1,-0.2 5,-0.6 0.976 106.8 51.2 -59.2 -59.9 3.5 -0.1 4.0 4 30 A L H >5S+ 0 0 57 1,-0.3 4,-3.0 2,-0.2 5,-0.3 0.890 115.3 44.0 -44.1 -49.0 0.7 -0.5 6.4 5 31 A L H X5S+ 0 0 48 -4,-1.4 4,-2.4 3,-0.2 5,-0.3 0.886 117.0 46.5 -65.3 -40.7 2.3 -3.7 7.7 6 32 A G H X5S+ 0 0 32 -4,-2.5 4,-2.6 2,-0.2 5,-0.3 0.944 123.2 33.3 -66.8 -50.5 5.7 -2.1 7.8 7 33 A V H X5S+ 0 0 61 -4,-4.4 4,-1.0 2,-0.2 -2,-0.2 0.794 127.4 42.4 -75.6 -30.4 4.5 1.1 9.5 8 34 A V H <>S+ 0 0 28 -4,-0.4 4,-2.0 -3,-0.4 5,-0.7 0.874 107.0 51.6 -74.4 -39.9 4.3 -2.5 17.2 13 39 A L H X5S+ 0 0 34 -4,-1.5 6,-1.4 3,-0.3 4,-0.6 0.902 122.4 31.4 -63.3 -43.3 7.9 -3.4 17.7 14 40 A T H <5S+ 0 0 54 -4,-2.4 -2,-0.2 4,-0.2 -1,-0.2 0.720 142.5 21.1 -86.0 -25.3 8.7 -0.0 19.1 15 41 A G H <5S+ 0 0 68 -4,-1.6 -2,-0.3 -5,-0.4 -3,-0.2 0.142 131.3 46.0-126.7 13.9 5.3 0.4 20.6 16 42 A Y H <5S+ 0 0 64 -4,-2.0 -3,-0.3 -6,-0.2 -4,-0.1 0.504 125.2 26.6-127.6 -22.8 4.3 -3.3 20.7 17 43 A L S < - 0 0 31 -2,-0.4 5,-2.9 -3,-0.2 6,-0.4 -0.752 5.6-153.7 -88.5 106.2 13.2 -7.6 18.6 23 49 A P T 5S+ 0 0 90 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 0.716 102.8 15.1 -49.2 -20.8 15.7 -10.5 18.0 24 50 A A T >5S+ 0 0 69 3,-0.1 4,-0.5 -3,-0.0 -2,-0.1 0.657 144.2 28.9-120.5 -44.4 12.5 -12.4 17.1 25 51 A L H >5S+ 0 0 59 2,-0.1 4,-1.9 3,-0.1 5,-0.1 0.880 121.0 51.5 -86.0 -45.7 9.9 -9.6 16.5 26 52 A A H >>5S+ 0 0 20 1,-0.2 4,-3.4 2,-0.2 3,-0.6 0.969 106.8 52.3 -55.1 -60.0 12.3 -6.9 15.4 27 53 A I H 3>X S+ 0 0 28 -4,-2.4 4,-2.0 -5,-0.2 3,-1.4 0.971 104.5 53.3 -56.5 -60.0 9.8 -4.1 6.1 34 60 A Y H 3X S+ 0 0 51 -4,-2.4 4,-3.1 1,-0.3 5,-0.3 0.845 104.5 58.8 -44.0 -40.2 12.7 -4.3 3.6 35 61 A A H 3X S+ 0 0 50 -4,-1.6 4,-2.2 1,-0.2 -1,-0.3 0.892 105.2 48.3 -58.1 -42.3 10.6 -6.8 1.7 36 62 A I H X S+ 0 0 50 -4,-2.0 4,-2.0 2,-0.2 3,-1.4 0.981 113.6 45.2 -63.9 -60.0 10.4 -1.6 0.1 38 64 A R H 3X S+ 0 0 45 -4,-3.1 4,-3.0 1,-0.3 5,-0.5 0.891 106.1 62.2 -51.0 -44.3 12.2 -3.8 -2.3 39 65 A K H 3< S+ 0 0 50 -4,-2.2 -1,-0.3 -5,-0.3 -2,-0.2 0.831 110.0 40.8 -51.6 -34.8 8.9 -5.1 -3.6 40 66 A R H << S+ 0 0 53 -3,-1.4 -1,-0.3 -4,-0.9 -2,-0.2 0.787 117.7 48.6 -83.7 -31.7 8.2 -1.4 -4.6 41 67 A Q H < S+ 0 0 69 -4,-2.0 -2,-0.2 1,-0.2 -3,-0.2 0.987 121.6 30.9 -70.9 -63.5 11.7 -0.9 -5.9 42 68 A A < 0 0 86 -4,-3.0 -1,-0.2 -5,-0.1 -3,-0.2 0.355 360.0 360.0 -77.8 6.5 12.1 -4.0 -8.1 43 69 A D 0 0 75 -5,-0.5 0, 0.0 0, 0.0 0, 0.0 -0.974 360.0 360.0-160.0 360.0 8.4 -3.7 -8.7