==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 30-MAY-06 2H67 . COMPND 2 MOLECULE: INSULIN A CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Q.X.HUA,M.LIU,S.Q.HU,W.JIA,P.ARVAN,M.A.WEISS . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3824.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 70.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 27.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 78 0, 0.0 4,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 35.3 -8.5 4.4 4.1 2 2 A I H > + 0 0 55 47,-0.1 4,-0.7 2,-0.1 5,-0.1 0.861 360.0 30.6 -80.8 -35.5 -5.9 1.9 2.9 3 3 A V H >> S+ 0 0 23 2,-0.2 4,-5.1 46,-0.2 3,-0.6 0.922 106.9 68.9 -85.9 -53.2 -4.7 4.1 0.1 4 4 A E H 34>S+ 0 0 129 1,-0.3 5,-0.8 2,-0.2 4,-0.3 0.796 102.0 51.6 -36.4 -34.9 -5.3 7.5 1.6 5 5 A Q H 3<5S+ 0 0 122 -4,-0.5 -1,-0.3 1,-0.1 -2,-0.2 0.958 125.2 22.4 -73.9 -50.3 -2.5 6.7 4.0 6 6 A a H <<5S+ 0 0 0 -4,-0.7 22,-2.2 -3,-0.6 5,-0.4 0.692 126.8 54.4 -89.5 -18.6 0.2 5.6 1.4 7 7 A b T <5S+ 0 0 19 -4,-5.1 21,-0.6 20,-0.2 22,-0.2 0.968 118.5 22.3 -78.2 -76.0 -1.5 7.6 -1.4 8 8 A T T 5S+ 0 0 82 -4,-0.3 -3,-0.1 -5,-0.2 3,-0.1 0.950 126.1 42.2 -55.9 -87.2 -1.8 11.2 -0.2 9 9 A S S > - 0 0 25 -2,-0.4 4,-2.8 1,-0.1 3,-1.9 -0.839 23.1-127.0 -99.7 130.1 7.4 3.6 2.9 13 13 A L H 3> S+ 0 0 55 -2,-0.5 4,-0.8 1,-0.3 -1,-0.1 0.840 115.5 55.8 -45.0 -30.3 7.2 0.2 1.0 14 14 A Y H 34 S+ 0 0 170 1,-0.2 -1,-0.3 2,-0.2 4,-0.2 0.884 110.6 42.5 -72.4 -33.3 7.9 -1.3 4.4 15 15 A Q H X4 S+ 0 0 106 -3,-1.9 3,-1.0 1,-0.2 -2,-0.2 0.775 108.6 59.9 -81.7 -23.7 4.8 0.5 5.8 16 16 A L H >< S+ 0 0 0 -4,-2.8 3,-1.4 1,-0.2 4,-0.4 0.722 89.5 72.1 -74.8 -18.3 2.9 -0.3 2.7 17 17 A E G >< S+ 0 0 100 -4,-0.8 3,-0.8 -5,-0.4 -1,-0.2 0.703 80.5 74.6 -70.0 -15.0 3.4 -4.0 3.5 18 18 A N G < S+ 0 0 128 -3,-1.0 -1,-0.3 1,-0.2 -2,-0.1 0.432 88.1 61.6 -77.9 6.0 0.9 -3.5 6.4 19 19 A Y G < S+ 0 0 27 -3,-1.4 28,-1.2 26,-0.0 -1,-0.2 0.648 79.5 103.9-102.8 -19.6 -1.8 -3.5 3.8 20 20 A c B < A 46 0A 10 -3,-0.8 26,-0.4 -4,-0.4 25,-0.2 0.129 360.0 360.0 -49.9 178.9 -1.2 -7.1 2.5 21 21 A N 0 0 153 24,-2.0 25,-0.2 23,-1.1 -1,-0.2 0.598 360.0 360.0 -60.7 360.0 -3.6 -9.8 3.6 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 159 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 138.6 12.2 4.0 -5.9 24 2 B V - 0 0 113 -12,-0.0 2,-2.7 -11,-0.0 -11,-0.1 -0.574 360.0 -53.1-131.1-163.2 12.1 6.3 -2.8 25 3 B N S S+ 0 0 74 -2,-0.2 2,-0.1 -13,-0.1 -13,-0.1 -0.404 80.1 151.9 -76.6 71.6 9.4 7.5 -0.4 26 4 B Q - 0 0 79 -2,-2.7 -15,-1.1 -15,-0.2 0, 0.0 -0.455 53.6 -81.1 -94.8 174.4 7.1 8.7 -3.1 27 5 B A - 0 0 34 -17,-0.2 2,-0.4 -2,-0.1 -20,-0.2 -0.289 36.9-142.2 -70.4 162.3 3.3 8.9 -2.9 28 6 B L + 0 0 0 -22,-2.2 2,-0.3 -21,-0.6 -20,-0.2 -0.681 41.5 138.0-129.4 82.4 1.3 5.7 -3.4 29 7 B b >> - 0 0 46 -2,-0.4 3,-0.8 -22,-0.2 4,-0.8 -0.775 56.0 -1.7-120.1 168.0 -1.9 6.2 -5.4 30 8 B G H >> S- 0 0 42 -2,-0.3 3,-1.6 1,-0.2 4,-1.0 -0.112 131.6 -18.6 50.6-150.7 -3.7 4.4 -8.2 31 9 B S H 3> S+ 0 0 63 1,-0.3 4,-5.1 2,-0.2 5,-0.5 0.871 130.6 74.5 -55.4 -33.8 -1.8 1.3 -9.5 32 10 B D H <> S+ 0 0 73 -3,-0.8 4,-1.3 3,-0.2 -1,-0.3 0.911 100.5 45.8 -46.8 -39.1 1.3 2.7 -7.9 33 11 B L H XX S+ 0 0 0 -3,-1.6 4,-3.4 -4,-0.8 3,-1.5 0.995 120.1 34.4 -66.7 -73.4 -0.3 1.6 -4.6 34 12 B V H 3X S+ 0 0 24 -4,-1.0 4,-5.2 1,-0.3 5,-0.4 0.912 118.1 56.6 -49.0 -41.7 -1.5 -1.9 -5.6 35 13 B E H 3X S+ 0 0 113 -4,-5.1 4,-0.6 -5,-0.3 -1,-0.3 0.847 112.2 41.4 -61.6 -29.6 1.7 -2.0 -7.7 36 14 B A H S+ 0 0 0 -4,-3.4 4,-2.7 2,-0.2 5,-0.9 0.952 112.0 52.7 -73.9 -50.9 1.5 -3.7 -2.6 38 16 B Y H <5S+ 0 0 136 -4,-5.2 -1,-0.2 -5,-0.3 -3,-0.2 0.822 118.0 39.8 -53.0 -32.5 1.5 -6.3 -5.3 39 17 B L H <5S+ 0 0 142 -4,-0.6 -2,-0.2 -5,-0.4 -1,-0.2 0.902 112.5 51.2 -88.5 -45.6 5.3 -6.1 -5.2 40 18 B V H <5S- 0 0 42 -4,-2.7 -2,-0.2 -5,-0.1 -3,-0.2 0.970 141.6 -5.3 -56.4 -50.8 5.9 -5.8 -1.5 41 19 B c T <5S+ 0 0 13 -4,-2.7 2,-3.7 -5,-0.2 -3,-0.2 0.776 77.1 144.5-107.0 -73.2 3.8 -8.8 -0.8 42 20 B G S >