==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 26-JUN-06 2HGC . COMPND 2 MOLECULE: YJCQ PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR P.ROSSI,J.R.CORT,C.K.HO,H.JANJUA,K.CUNNINGHAM,L.-C.MA, . 78 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5243.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 56.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 7.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 39.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A K 0 0 175 0, 0.0 4,-0.4 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 -55.1 -11.2 2.2 4.3 2 6 A L > + 0 0 66 2,-0.1 4,-2.2 1,-0.1 5,-0.2 0.376 360.0 88.7-100.4 3.1 -7.7 3.5 3.6 3 7 A R H > S+ 0 0 74 2,-0.2 4,-2.0 1,-0.2 5,-0.1 0.977 96.4 33.6 -67.4 -56.1 -6.3 0.1 2.6 4 8 A Y H > S+ 0 0 16 2,-0.2 4,-2.9 1,-0.2 5,-0.2 0.893 115.4 60.3 -62.6 -40.8 -7.1 0.5 -1.1 5 9 A A H > S+ 0 0 3 -4,-0.4 4,-1.5 1,-0.2 -2,-0.2 0.906 109.6 40.2 -58.0 -45.0 -6.5 4.2 -1.0 6 10 A I H X S+ 0 0 0 -4,-2.2 4,-2.2 2,-0.2 -1,-0.2 0.893 112.7 56.5 -71.3 -39.2 -2.9 3.8 0.1 7 11 A L H X S+ 0 0 0 -4,-2.0 4,-2.7 -5,-0.2 -2,-0.2 0.913 106.9 49.5 -56.3 -45.0 -2.5 0.8 -2.3 8 12 A K H X S+ 0 0 19 -4,-2.9 4,-2.2 1,-0.2 5,-0.4 0.881 108.9 52.4 -62.6 -39.6 -3.5 3.1 -5.2 9 13 A E H X S+ 0 0 29 -4,-1.5 4,-1.6 -5,-0.2 6,-0.4 0.868 111.4 47.2 -64.6 -37.2 -1.1 5.7 -4.1 10 14 A I H X S+ 0 0 8 -4,-2.2 4,-1.7 3,-0.2 -2,-0.2 0.923 109.4 55.4 -66.1 -44.1 1.6 3.1 -4.1 11 15 A F H < S+ 0 0 98 -4,-2.7 -2,-0.2 1,-0.2 -1,-0.2 0.913 123.8 21.2 -58.4 -50.5 0.6 1.8 -7.5 12 16 A E H < S+ 0 0 119 -4,-2.2 -1,-0.2 1,-0.2 -2,-0.2 0.675 117.4 64.9 -95.8 -19.0 0.8 5.2 -9.4 13 17 A G H < S- 0 0 46 -4,-1.6 -2,-0.2 -5,-0.4 -3,-0.2 0.766 86.9-148.9 -74.2 -27.1 3.2 6.9 -7.0 14 18 A N < - 0 0 123 -4,-1.7 -4,-0.1 -5,-0.1 -3,-0.1 0.386 54.9 -72.1 74.2 -1.8 5.9 4.4 -7.8 15 19 A T S S+ 0 0 16 -6,-0.4 2,-0.1 1,-0.1 40,-0.1 0.475 95.8 85.8 59.6 153.6 7.2 4.9 -4.2 16 20 A P + 0 0 65 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.593 56.4 167.6 -81.7 167.1 8.3 6.1 -1.9 17 21 A L - 0 0 27 -2,-0.1 37,-0.2 -3,-0.1 2,-0.1 -0.989 28.2-124.0-140.8 149.1 5.4 8.0 -0.4 18 22 A S > - 0 0 45 -2,-0.3 4,-1.3 1,-0.1 6,-0.1 -0.407 15.0-129.7 -85.2 167.3 4.8 9.8 2.9 19 23 A E H >>S+ 0 0 53 2,-0.2 5,-3.1 3,-0.1 4,-2.3 0.916 112.0 42.9 -80.6 -48.2 1.9 9.2 5.2 20 24 A N H 45S+ 0 0 130 3,-0.2 -1,-0.1 1,-0.2 5,-0.1 0.812 112.8 57.0 -66.6 -27.9 1.0 12.9 5.6 21 25 A D H 45S+ 0 0 133 1,-0.2 -1,-0.2 2,-0.1 -2,-0.2 0.890 109.4 42.1 -72.7 -40.6 1.5 13.2 1.8 22 26 A I H <5S- 0 0 8 -4,-1.3 -2,-0.2 2,-0.1 -1,-0.2 0.844 127.4-100.6 -74.3 -32.9 -1.1 10.4 1.0 23 27 A G T <5S+ 0 0 59 -4,-2.3 2,-0.2 1,-0.4 -3,-0.2 0.588 85.4 92.8 125.2 20.4 -3.4 11.9 3.7 24 28 A V S - 0 0 79 -2,-0.2 4,-2.4 1,-0.1 5,-0.2 -0.381 41.6-101.9 -85.3 172.5 -1.0 9.6 10.0 26 30 A E H > S+ 0 0 123 1,-0.2 4,-3.3 2,-0.2 5,-0.2 0.956 121.9 46.0 -58.3 -53.2 2.2 7.5 10.5 27 31 A D H > S+ 0 0 88 1,-0.2 4,-2.6 2,-0.2 -1,-0.2 0.788 111.6 52.6 -65.8 -30.0 0.5 4.8 12.4 28 32 A Q H > S+ 0 0 98 2,-0.2 4,-2.1 3,-0.2 -1,-0.2 0.930 113.9 42.2 -69.2 -46.7 -2.4 4.6 9.9 29 33 A F H X S+ 0 0 16 -4,-2.4 4,-2.8 2,-0.2 -2,-0.2 0.922 115.3 52.4 -62.9 -45.3 0.0 4.2 7.0 30 34 A D H X S+ 0 0 22 -4,-3.3 4,-2.7 -5,-0.2 5,-0.2 0.939 110.4 45.7 -54.7 -53.9 2.1 1.8 9.1 31 35 A D H X S+ 0 0 82 -4,-2.6 4,-2.7 1,-0.2 5,-0.2 0.891 112.9 52.0 -60.9 -40.2 -0.9 -0.4 9.9 32 36 A A H X S+ 0 0 2 -4,-2.1 4,-3.0 2,-0.2 5,-0.2 0.957 111.7 44.5 -61.1 -52.2 -2.1 -0.3 6.3 33 37 A V H X S+ 0 0 2 -4,-2.8 4,-2.2 1,-0.2 -2,-0.2 0.914 115.3 48.5 -60.1 -44.7 1.3 -1.4 4.9 34 38 A N H X S+ 0 0 44 -4,-2.7 4,-2.2 -5,-0.2 -1,-0.2 0.919 114.4 45.5 -62.4 -45.0 1.7 -4.1 7.6 35 39 A F H X S+ 0 0 66 -4,-2.7 4,-2.5 -5,-0.2 5,-0.3 0.930 113.5 48.5 -64.3 -46.8 -1.8 -5.5 7.0 36 40 A L H X>S+ 0 0 1 -4,-3.0 5,-3.5 1,-0.2 4,-1.2 0.850 112.5 50.1 -63.7 -34.8 -1.4 -5.4 3.2 37 41 A K H <5S+ 0 0 89 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.899 111.2 48.8 -67.3 -41.5 1.9 -7.2 3.5 38 42 A R H <5S+ 0 0 180 -4,-2.2 -2,-0.2 1,-0.2 -1,-0.2 0.929 113.9 43.1 -67.3 -47.4 0.5 -9.8 5.8 39 43 A E H <5S- 0 0 72 -4,-2.5 -1,-0.2 -5,-0.1 -2,-0.2 0.741 120.1-107.2 -74.6 -22.9 -2.5 -10.7 3.6 40 44 A G T <5S+ 0 0 20 -4,-1.2 25,-0.4 -5,-0.3 24,-0.3 0.868 79.6 125.3 99.5 46.8 -0.4 -10.6 0.5 41 45 A Y S - 0 0 36 -21,-2.6 4,-2.9 -2,-0.3 5,-0.2 -0.421 28.0-106.3 -87.2 171.4 0.7 -9.0 -6.1 63 67 A E H > S+ 0 0 153 2,-0.2 4,-3.4 1,-0.2 5,-0.2 0.899 124.4 52.4 -63.5 -38.3 -2.0 -10.2 -8.5 64 68 A K H > S+ 0 0 117 -24,-0.3 4,-2.0 2,-0.2 -1,-0.2 0.917 112.2 44.1 -63.0 -44.5 -4.3 -10.2 -5.5 65 69 A G H > S+ 0 0 0 -25,-0.4 4,-1.5 -24,-0.3 -2,-0.2 0.915 115.9 47.6 -66.2 -42.7 -3.4 -6.7 -4.7 66 70 A E H X S+ 0 0 51 -4,-2.9 4,-1.1 1,-0.2 3,-0.2 0.926 113.5 47.3 -63.0 -46.6 -3.6 -5.6 -8.3 67 71 A N H X S+ 0 0 84 -4,-3.4 4,-1.4 1,-0.2 -1,-0.2 0.846 106.8 59.1 -63.2 -34.5 -7.0 -7.4 -8.8 68 72 A Y H X S+ 0 0 71 -4,-2.0 4,-3.0 1,-0.2 -1,-0.2 0.875 100.8 55.0 -62.6 -37.7 -8.2 -5.8 -5.6 69 73 A L H X S+ 0 0 15 -4,-1.5 4,-0.6 -3,-0.2 -1,-0.2 0.840 103.8 55.8 -63.4 -33.5 -7.6 -2.4 -7.1 70 74 A K H < S+ 0 0 125 -4,-1.1 -1,-0.2 -3,-0.2 -2,-0.2 0.871 116.1 35.2 -68.5 -36.3 -9.8 -3.3 -10.0 71 75 A E H >< S+ 0 0 159 -4,-1.4 3,-0.6 1,-0.2 -2,-0.2 0.906 125.7 37.4 -85.3 -45.8 -12.7 -4.1 -7.7 72 76 A N H 3< S+ 0 0 49 -4,-3.0 -2,-0.2 1,-0.2 -3,-0.2 0.360 86.9 104.3 -89.5 5.5 -12.3 -1.5 -5.0 73 77 A G T 3< + 0 0 31 -4,-0.6 2,-2.6 -5,-0.2 -1,-0.2 0.639 50.0 96.6 -62.8 -15.1 -11.2 1.0 -7.7 74 78 A T < + 0 0 133 -3,-0.6 2,-0.4 -4,-0.1 -1,-0.2 -0.417 59.3 111.8 -75.4 67.0 -14.6 2.7 -7.4 75 79 A W S S- 0 0 110 -2,-2.6 2,-1.4 2,-0.1 -3,-0.0 -0.967 73.2-123.4-143.3 124.6 -13.3 5.3 -5.0 76 80 A S + 0 0 127 -2,-0.4 2,-0.3 2,-0.1 -2,-0.1 -0.531 62.6 129.4 -68.9 93.3 -12.9 9.0 -5.6 77 81 A K 0 0 71 -2,-1.4 -2,-0.1 -69,-0.0 0, 0.0 -0.862 360.0 360.0-154.6 112.5 -9.2 9.4 -4.9 78 82 A A 0 0 107 -2,-0.3 -2,-0.1 -69,-0.0 0, 0.0 -0.041 360.0 360.0 73.3 360.0 -6.5 11.1 -7.0