==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRUS 17-DEC-00 1HH0 . COMPND 2 MOLECULE: PH75 INOVIRUS MAJOR COAT PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACTERIOPHAGE PH75; . AUTHOR D.M.PEDERSON,L.C.WELSH,D.A.MARVIN,M.SAMPSON,R.N.PERHAM,M.YU, . 46 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4605.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 95.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 21.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 67.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 236 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 171.9 2.3 -32.5 43.3 2 2 A D - 0 0 156 0, 0.0 2,-0.4 0, 0.0 0, 0.0 -0.866 360.0 -90.9-160.5-179.9 2.9 -30.5 40.0 3 3 A F > - 0 0 148 -2,-0.2 3,-0.6 1,-0.0 0, 0.0 -0.834 32.1-137.7-104.1 141.8 1.8 -27.0 38.9 4 4 A N T 3 S+ 0 0 109 -2,-0.4 4,-0.4 1,-0.2 5,-0.1 -0.117 78.1 96.7-100.1 46.4 -1.5 -26.9 37.0 5 5 A P T 3> S+ 0 0 41 0, 0.0 4,-0.5 0, 0.0 5,-0.2 0.580 80.2 65.5 -91.4 -20.0 -0.9 -24.5 34.1 6 6 A S T <4 S+ 0 0 80 -3,-0.6 4,-0.3 3,-0.2 -2,-0.1 0.843 107.3 26.8 -74.8 -50.8 -0.2 -27.5 32.0 7 7 A E T 4 S+ 0 0 157 2,-0.1 -1,-0.1 1,-0.1 -3,-0.1 0.938 132.7 34.2 -78.2 -51.3 -3.5 -29.5 31.6 8 8 A V T >4 S+ 0 0 90 -4,-0.4 3,-0.8 2,-0.2 4,-0.2 0.657 112.2 56.2 -77.8 -28.9 -6.0 -26.5 32.1 9 9 A A T >< S+ 0 0 62 -4,-0.5 3,-1.3 1,-0.2 4,-0.2 0.845 98.1 70.2 -74.4 -28.5 -4.0 -23.6 30.5 10 10 A S T >> + 0 0 52 -4,-0.3 3,-2.7 1,-0.3 4,-0.6 0.561 67.8 91.6 -54.3 -24.4 -4.0 -25.9 27.4 11 11 A Q H X> S+ 0 0 122 -3,-0.8 3,-1.8 1,-0.3 4,-1.0 0.911 79.3 63.6 -51.7 -33.7 -7.8 -25.5 26.8 12 12 A V H <> S+ 0 0 71 -3,-1.3 4,-1.8 1,-0.3 -1,-0.3 0.782 82.4 79.4 -54.9 -28.1 -6.8 -22.6 24.5 13 13 A T H <> S+ 0 0 81 -3,-2.7 4,-0.8 1,-0.3 -1,-0.3 0.906 97.4 41.7 -53.6 -38.3 -5.1 -25.2 22.5 14 14 A N H X S+ 0 0 73 -4,-2.2 4,-1.1 1,-0.2 3,-0.8 0.928 101.4 55.0 -64.0 -48.9 -11.5 -24.5 16.0 19 19 A I H 3X>S+ 0 0 113 -4,-0.7 4,-2.6 1,-0.2 5,-0.9 0.787 88.7 77.9 -57.6 -28.1 -10.8 -21.3 13.8 20 20 A A H 3X5S+ 0 0 57 -4,-0.5 4,-1.7 -3,-0.2 5,-0.3 0.969 101.7 38.2 -53.2 -49.2 -8.9 -23.3 11.4 21 21 A A H S+ 0 0 103 -4,-1.1 4,-2.6 2,-0.3 5,-0.6 0.924 123.8 55.5 -75.9 -36.6 -10.1 -16.0 4.0 28 28 A A H <5S+ 0 0 43 -4,-4.6 -3,-0.2 1,-0.2 -2,-0.2 0.926 118.9 34.3 -54.5 -45.9 -10.8 -19.2 2.2 29 29 A L H XX5S+ 0 0 47 -4,-3.4 4,-2.2 1,-0.2 3,-0.6 0.988 121.4 41.8 -73.7 -51.1 -12.5 -13.8 1.0 31 31 A I H 3X5S+ 0 0 96 -4,-2.6 4,-1.8 1,-0.2 5,-0.3 0.709 102.6 75.6 -56.1 -28.1 -9.5 -15.2 -0.8 32 32 A G H 3>X S+ 0 0 76 -4,-1.8 3,-1.2 -3,-0.2 4,-0.9 0.934 125.3 49.4 -75.9 -42.5 -7.8 -14.8 -6.9 36 36 A A H 3X S+ 0 0 50 -4,-1.0 4,-2.4 -5,-0.3 5,-0.4 0.766 99.4 69.0 -61.3 -28.9 -11.0 -15.5 -9.1 37 37 A W H 3X S+ 0 0 148 -4,-3.1 4,-1.7 1,-0.2 -1,-0.3 0.868 93.6 56.3 -62.6 -35.4 -11.6 -11.9 -9.0 38 38 A K H X S+ 0 0 146 -4,-2.2 3,-0.6 -5,-0.2 4,-0.5 0.734 97.5 60.1 -76.2 -49.0 -9.6 -9.6 -16.2 43 43 A F G >< S+ 0 0 110 -4,-3.0 3,-0.8 1,-0.2 -3,-0.1 0.867 93.2 58.7 -72.7 -28.5 -10.2 -11.8 -19.2 44 44 A L G 34 S+ 0 0 154 -5,-0.4 -1,-0.2 -4,-0.3 -2,-0.1 0.796 93.1 75.2 -64.2 -26.5 -13.2 -10.4 -20.9 45 45 A K G <4 0 0 176 -3,-0.6 -1,-0.2 1,-0.2 -2,-0.2 0.807 360.0 360.0 -53.5 -38.2 -11.0 -7.1 -21.2 46 46 A G << 0 0 131 -3,-0.8 -1,-0.2 -4,-0.5 -2,-0.2 0.756 360.0 360.0 -75.2 360.0 -8.8 -8.6 -24.0