==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-JUL-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC/PEPTIDE 29-DEC-00 1HHZ . COMPND 2 MOLECULE: DEGLUCOBALHIMYCIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.LEHMANN,G.BUNKOCZI,G.M.SHELDRICK,L.VERTESY . 32 7 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3082.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 145 0, 0.0 26,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-150.8 37.3 10.6 28.3 2 2 A X + 0 0 193 2,-0.1 16,-0.0 0, 0.0 0, 0.0 0.527 360.0 80.6 101.5 8.4 38.4 8.3 31.2 3 3 A N S S- 0 0 57 24,-1.8 2,-0.4 1,-0.2 16,-0.1 0.819 78.0-130.4-120.8 -56.0 36.2 5.5 30.1 4 4 A X + 0 0 64 23,-2.8 23,-2.2 14,-0.1 2,-0.3 -0.987 30.9 154.8 131.3-139.3 37.3 3.1 27.2 5 5 A X B -A 26 0A 42 -2,-0.4 21,-0.2 21,-0.2 2,-0.0 -0.940 40.3-145.7 151.8-160.9 35.7 1.9 24.1 6 6 A X 0 0 163 19,-0.7 20,-0.2 -2,-0.3 -1,-0.2 0.494 360.0 360.0-111.5 145.2 36.1 0.9 21.3 7 7 A X 0 0 90 18,-2.1 16,-0.0 -3,-0.1 -1,-0.0 -0.293 360.0 360.0 -92.4 360.0 33.2 2.2 19.3 8 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 9 1 B X 0 0 181 0, 0.0 25,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-124.6 21.3 13.0 12.3 10 2 B X + 0 0 166 2,-0.1 0, 0.0 0, 0.0 0, 0.0 0.547 360.0 82.2 112.6 11.1 20.1 9.6 13.6 11 3 B N S S- 0 0 108 23,-1.8 2,-0.4 1,-0.2 22,-0.0 0.832 73.8-134.0-115.4 -57.7 23.4 8.2 15.1 12 4 B X + 0 0 40 22,-2.9 22,-2.3 8,-0.0 2,-0.3 -0.996 31.3 156.6 128.7-131.5 24.3 9.4 18.6 13 5 B X B -BC 21 33B 58 8,-2.7 8,-2.7 -2,-0.4 20,-0.2 -0.970 40.5-147.0 144.8-154.3 27.6 10.5 19.9 14 6 B X 0 0 64 18,-0.6 19,-0.2 -2,-0.3 -1,-0.2 0.623 360.0 360.0-102.6 152.8 28.9 12.2 22.0 15 7 B X 0 0 187 17,-2.3 -1,-0.0 -3,-0.1 18,-0.0 -0.314 360.0 360.0 -95.8 360.0 31.9 13.6 20.3 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 C X 0 0 131 0, 0.0 21,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-113.6 30.3 4.1 31.0 18 2 C X + 0 0 143 20,-2.0 -15,-0.1 2,-0.1 -14,-0.1 0.559 360.0 91.7 119.3 7.9 30.2 7.7 29.9 19 3 C N - 0 0 1 1,-0.2 2,-0.4 -16,-0.1 7,-0.0 0.875 67.6-138.4-105.5 -55.0 30.4 7.5 26.1 20 4 C X + 0 0 40 -8,-0.0 18,-2.3 -5,-0.0 2,-0.3 -0.985 30.1 155.6 120.3-134.6 27.2 7.3 24.2 21 5 C X B -BD 13 37B 25 -8,-2.7 -8,-2.7 -2,-0.4 16,-0.2 -0.965 43.7-144.7 147.9-158.9 26.4 5.1 21.2 22 6 C X 0 0 95 14,-0.7 15,-0.2 -2,-0.3 -1,-0.2 0.558 360.0 360.0-106.1 148.1 24.3 3.8 19.7 23 7 C X 0 0 176 13,-2.1 -16,-0.0 -3,-0.1 -1,-0.0 -0.266 360.0 360.0 -91.6 360.0 25.9 0.6 18.6 24 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 25 3 D K 0 0 104 0, 0.0 -18,-2.1 0, 0.0 -19,-0.7 0.000 360.0 360.0 360.0 142.6 37.4 5.3 18.9 26 4 D X B A 5 0A 35 -20,-0.2 -21,-0.2 -21,-0.2 -7,-0.0 -0.945 360.0 360.0 140.5-164.5 37.0 6.1 22.6 27 5 D X 0 0 32 -23,-2.2 -23,-2.8 -2,-0.3 -24,-1.8 -0.942 360.0 360.0 151.0 360.0 39.2 7.2 25.3 28 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 29 1 E X 0 0 152 0, 0.0 5,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-178.1 20.2 19.3 23.5 30 2 E X 0 0 135 4,-0.0 3,-0.1 2,-0.0 0, 0.0 0.703 360.0 360.0 67.2 360.0 22.5 19.4 20.5 31 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 32 3 E K 0 0 147 0, 0.0 -17,-2.3 0, 0.0 -18,-0.6 0.000 360.0 360.0 360.0 42.8 28.1 17.3 20.0 33 4 E X B C 13 0B 27 -19,-0.2 -20,-0.2 -20,-0.2 0, 0.0 -0.929 360.0 360.0 152.8-172.7 26.1 14.6 18.3 34 5 E X 0 0 30 -22,-2.3 -22,-2.9 -2,-0.3 -23,-1.8 -0.942 360.0 360.0 154.0 360.0 22.6 13.8 17.1 35 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 36 3 F K 0 0 179 0, 0.0 -13,-2.1 0, 0.0 -14,-0.7 0.000 360.0 360.0 360.0 152.4 22.9 -0.1 23.0 37 4 F X B D 21 0B 40 -15,-0.2 -16,-0.2 -16,-0.2 0, 0.0 -0.933 360.0 360.0 141.4-166.2 25.7 1.9 24.5 38 5 F X 0 0 32 -18,-2.3 -20,-2.0 -2,-0.3 -17,-0.2 0.491 360.0 360.0 154.2 360.0 26.1 3.9 27.6