==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HIRUDIN 30-APR-92 1HIC . COMPND 2 MOLECULE: HIRUDIN VARIANT; . SOURCE 2 ORGANISM_SCIENTIFIC: HIRUDO MEDICINALIS; . AUTHOR T.SZYPERSKI,P.GUNTERT,S.R.STONE,K.WUTHRICH . 51 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3777.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 49.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 9.8 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 21.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 154 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 163.4 -9.4 12.1 -0.2 2 2 A V - 0 0 140 0, 0.0 2,-0.2 0, 0.0 17,-0.0 -0.967 360.0-169.5-110.7 127.7 -9.7 9.5 -3.0 3 3 A Y - 0 0 91 -2,-0.4 2,-0.2 16,-0.1 11,-0.1 -0.486 12.4-127.2-109.4 176.5 -6.6 7.4 -3.5 4 4 A T - 0 0 86 9,-0.3 11,-2.3 -2,-0.2 -1,-0.0 -0.774 30.9 -88.6-123.7 168.5 -5.5 4.9 -6.2 5 5 A D B -a 15 0A 102 9,-0.3 2,-0.3 -2,-0.2 -1,-0.2 -0.084 50.3 -94.0 -65.9 170.5 -4.3 1.2 -6.2 6 6 A a - 0 0 9 9,-0.8 -1,-0.1 8,-0.1 3,-0.1 -0.774 25.6-165.7 -86.2 143.4 -0.5 0.4 -5.9 7 7 A T S S+ 0 0 79 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.627 74.9 28.2 -97.9 -22.8 1.6 -0.2 -9.0 8 8 A E S > S- 0 0 94 20,-0.1 3,-0.6 21,-0.0 20,-0.2 -0.922 87.7-100.5-133.3 160.8 4.6 -1.9 -7.3 9 9 A S T 3 S+ 0 0 53 -2,-0.3 20,-0.3 1,-0.2 3,-0.1 -0.465 100.9 38.5 -75.9 154.8 5.1 -4.0 -4.1 10 10 A G T 3 S+ 0 0 24 18,-1.9 35,-2.2 1,-0.3 2,-0.3 0.719 87.2 128.9 78.5 22.8 6.5 -2.4 -0.9 11 11 A Q E < -Cd 28 45B 3 17,-1.0 17,-3.0 -3,-0.6 -1,-0.3 -0.843 39.3-161.3-108.2 147.7 4.5 0.9 -1.5 12 12 A N E + d 0 46B 8 33,-2.5 35,-1.5 -2,-0.3 11,-0.2 -0.623 62.8 52.5-115.2 176.9 2.2 2.6 1.0 13 13 A L S S+ 0 0 65 9,-2.7 -9,-0.3 1,-0.2 2,-0.3 0.874 88.0 106.3 64.6 42.9 -0.6 5.2 0.8 14 14 A a S S- 0 0 0 8,-0.3 8,-3.2 -3,-0.2 -9,-0.3 -0.972 80.4 -89.9-148.4 155.4 -2.6 3.2 -1.9 15 15 A L E +aB 5 21A 23 -11,-2.3 -9,-0.8 -2,-0.3 6,-0.2 -0.466 57.4 144.1 -70.0 133.8 -5.7 1.1 -2.0 16 16 A b E + 0 0 12 4,-1.9 2,-1.3 2,-0.3 21,-0.2 0.444 66.0 45.3-143.1 -63.1 -4.9 -2.5 -1.2 17 17 A E E > S- B 0 20A 142 3,-0.7 3,-2.3 19,-0.1 -1,-0.1 -0.714 128.1 -75.5 -85.0 87.8 -7.7 -4.2 0.7 18 18 A G T 3 S- 0 0 56 -2,-1.3 -2,-0.3 1,-0.3 -1,-0.0 -0.294 109.2 -13.3 58.6-136.3 -10.5 -2.8 -1.5 19 19 A S T 3 S+ 0 0 104 -4,-0.2 2,-0.5 -3,-0.1 -1,-0.3 0.373 111.9 108.8 -77.5 4.9 -11.1 0.9 -0.8 20 20 A N E < -B 17 0A 117 -3,-2.3 -4,-1.9 1,-0.0 -3,-0.7 -0.756 69.6-132.2 -86.2 125.4 -9.0 0.7 2.4 21 21 A V E -B 15 0A 46 -2,-0.5 2,-1.5 -6,-0.2 -6,-0.3 -0.537 19.3-113.2 -74.2 140.1 -5.7 2.5 2.0 22 22 A c - 0 0 0 -8,-3.2 -9,-2.7 -2,-0.2 -8,-0.3 -0.635 48.6-137.8 -73.7 90.4 -2.5 0.7 3.1 23 23 A G > - 0 0 31 -2,-1.5 3,-1.8 -11,-0.2 -1,-0.0 0.052 28.7 -70.3 -50.0 157.0 -1.8 3.2 6.0 24 24 A Q T 3 S+ 0 0 161 1,-0.3 -1,-0.1 -12,-0.1 3,-0.1 -0.155 123.0 30.5 -53.8 144.4 1.6 4.6 6.9 25 25 A G T 3 S+ 0 0 25 1,-0.3 17,-2.8 19,-0.2 2,-0.3 0.353 111.2 84.6 79.5 -2.4 4.0 2.1 8.4 26 26 A N E < - E 0 41B 54 -3,-1.8 2,-0.3 15,-0.3 -1,-0.3 -0.900 62.3-160.5-122.7 153.5 2.3 -0.6 6.2 27 27 A K E - E 0 40B 51 13,-2.9 13,-2.7 -2,-0.3 2,-0.5 -0.959 17.0-120.7-137.7 156.1 3.0 -1.5 2.6 28 28 A b E -CE 11 39B 0 -17,-3.0 -18,-1.9 -2,-0.3 -17,-1.0 -0.810 14.0-153.4-102.1 127.2 1.1 -3.4 -0.2 29 29 A I E - E 0 38B 38 9,-2.9 9,-2.1 -2,-0.5 2,-0.4 -0.930 15.6-142.6 -94.1 114.2 2.5 -6.4 -1.8 30 30 A L - 0 0 46 -2,-0.7 7,-0.1 7,-0.2 6,-0.1 -0.680 35.9-102.1 -65.5 130.7 1.1 -6.7 -5.3 31 31 A G - 0 0 27 -2,-0.4 3,-0.2 4,-0.3 -1,-0.1 -0.194 32.1-164.9 -53.2 151.9 0.6 -10.4 -5.8 32 32 A S S S+ 0 0 107 1,-0.1 -1,-0.1 4,-0.1 4,-0.1 -0.114 81.6 31.1-128.7 42.6 3.3 -12.1 -8.0 33 33 A D S S- 0 0 124 2,-0.2 -1,-0.1 0, 0.0 3,-0.1 -0.026 136.4 -56.9 153.1 34.9 1.6 -15.4 -8.8 34 34 A G S S+ 0 0 83 1,-0.2 -3,-0.1 -3,-0.2 0, 0.0 0.312 97.4 137.0 73.1 -8.2 -2.2 -14.9 -8.9 35 35 A E - 0 0 112 1,-0.1 -4,-0.3 -5,-0.1 -1,-0.2 -0.171 51.5-120.6 -63.5 155.6 -2.2 -13.5 -5.3 36 36 A K - 0 0 169 1,-0.1 2,-0.2 -6,-0.1 -7,-0.1 -0.503 42.9 -68.9 -95.2 167.5 -4.3 -10.5 -4.4 37 37 A N - 0 0 64 -21,-0.2 2,-0.5 -2,-0.2 -7,-0.2 -0.417 54.4-168.6 -59.5 123.6 -3.2 -7.1 -3.1 38 38 A Q E -E 29 0B 79 -9,-2.1 -9,-2.9 -2,-0.2 2,-0.6 -0.964 10.5-158.4-126.4 113.6 -1.9 -7.7 0.6 39 39 A c E +E 28 0B 43 -2,-0.5 2,-0.3 -11,-0.3 -11,-0.2 -0.821 21.9 172.0 -91.8 119.7 -1.3 -4.7 2.9 40 40 A V E -E 27 0B 57 -13,-2.7 -13,-2.9 -2,-0.6 3,-0.1 -0.934 33.7-101.3-128.4 152.4 1.1 -5.7 5.8 41 41 A T E S+E 26 0B 116 -2,-0.3 2,-0.3 -15,-0.3 -15,-0.3 -0.222 77.7 81.2 -64.5 159.4 2.9 -3.7 8.5 42 42 A G S S- 0 0 48 -17,-2.8 2,-0.2 2,-0.0 -1,-0.1 -0.867 88.8 -66.1 150.4-104.0 6.6 -2.8 8.2 43 43 A E + 0 0 128 -2,-0.3 2,-0.3 -3,-0.1 -16,-0.1 -0.893 50.0 175.6-169.6 160.3 7.5 0.3 6.1 44 44 A G - 0 0 17 -2,-0.2 -33,-0.3 -18,-0.2 -19,-0.2 -0.981 35.9 -81.4-164.6 166.8 7.3 1.2 2.3 45 45 A T E -d 11 0B 83 -35,-2.2 -33,-2.5 -2,-0.3 2,-0.4 -0.492 47.4-112.8 -76.4 140.8 7.8 3.8 -0.3 46 46 A P E -d 12 0B 87 0, 0.0 -33,-0.2 0, 0.0 -1,-0.1 -0.644 34.7-108.9 -76.0 131.7 5.0 6.5 -0.8 47 47 A K - 0 0 43 -35,-1.5 4,-0.0 -2,-0.4 2,-0.0 -0.410 36.3-132.5 -58.7 118.6 3.3 6.2 -4.2 48 48 A P - 0 0 74 0, 0.0 2,-1.0 0, 0.0 -1,-0.1 -0.300 33.4 -86.6 -77.6 160.6 4.4 9.2 -6.4 49 49 A Q S S- 0 0 175 2,-0.1 -2,-0.0 -2,-0.0 0, 0.0 -0.554 103.8 -18.6 -82.4 102.8 1.8 11.3 -8.3 50 50 A S 0 0 113 -2,-1.0 0, 0.0 -3,-0.0 0, 0.0 0.366 360.0 360.0 61.2 144.6 1.5 9.3 -11.5 51 51 A H 0 0 214 -4,-0.0 -2,-0.1 -44,-0.0 0, 0.0 0.761 360.0 360.0 -95.2 360.0 4.4 6.8 -12.3