==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 01-DEC-00 1HLL . COMPND 2 MOLECULE: ALPHA-2A ADRENERGIC RECEPTOR; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.A.CHUNG,E.R.P.ZUIDERWEG,R.R.NEUBIG . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3092.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 75.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T >> 0 0 137 0, 0.0 4,-1.0 0, 0.0 3,-0.5 0.000 360.0 360.0 360.0 -41.2 -9.1 23.4 7.4 2 2 A S H 3> + 0 0 99 1,-0.2 4,-0.8 2,-0.2 5,-0.1 0.525 360.0 69.5 -91.0 -6.7 -12.0 21.8 8.8 3 3 A S H 34 S+ 0 0 95 2,-0.1 -1,-0.2 3,-0.1 4,-0.1 0.286 101.1 45.3 -93.6 9.4 -13.3 21.1 5.6 4 4 A I H <> S+ 0 0 98 -3,-0.5 4,-3.4 3,-0.1 5,-0.4 0.747 103.3 55.7-112.7 -59.7 -10.8 18.6 4.9 5 5 A V H X S+ 0 0 98 -4,-1.0 4,-2.5 1,-0.3 5,-0.2 0.924 106.4 53.6 -41.9 -58.9 -10.5 16.6 7.8 6 6 A H H < S+ 0 0 127 -4,-0.8 3,-0.4 1,-0.3 -1,-0.3 0.918 111.2 46.6 -43.2 -53.7 -14.1 15.8 7.8 7 7 A L H >> S+ 0 0 103 1,-0.3 3,-3.4 2,-0.2 4,-1.6 0.957 108.4 53.2 -54.6 -55.0 -13.7 14.7 4.3 8 8 A C H 3X S+ 0 0 75 -4,-3.4 4,-0.7 1,-0.3 -1,-0.3 0.794 100.2 67.2 -51.5 -27.5 -10.8 12.8 5.1 9 9 A A H 3< S+ 0 0 56 -4,-2.5 -1,-0.3 -3,-0.4 -2,-0.2 0.378 103.9 42.4 -75.6 5.3 -12.9 11.3 7.6 10 10 A I H <> S+ 0 0 98 -3,-3.4 4,-1.8 -5,-0.2 -2,-0.2 0.736 106.5 55.4-113.1 -52.9 -15.0 9.8 5.1 11 11 A S H < S+ 0 0 68 -4,-1.6 4,-0.4 1,-0.2 -2,-0.1 0.694 111.3 46.6 -63.7 -16.2 -12.7 8.4 2.6 12 12 A L T >X S+ 0 0 100 -4,-0.7 3,-1.0 -5,-0.4 4,-0.8 0.937 102.9 58.3 -89.8 -53.6 -10.9 6.5 5.2 13 13 A D H >> S+ 0 0 85 1,-0.3 3,-1.8 -5,-0.3 4,-1.5 0.919 96.9 65.5 -48.8 -47.5 -13.7 5.0 7.0 14 14 A R H 3X S+ 0 0 153 -4,-1.8 4,-0.8 1,-0.3 -1,-0.3 0.886 107.8 40.5 -43.6 -46.4 -14.8 3.4 3.8 15 15 A Y H <> S+ 0 0 129 -3,-1.0 4,-1.4 -4,-0.4 -1,-0.3 0.496 101.6 74.4 -84.3 -3.0 -11.7 1.5 3.9 16 16 A W H X S+ 0 0 96 -4,-0.8 3,-1.7 -5,-0.3 4,-0.6 0.980 107.3 51.2 -58.2 -57.8 -12.9 -3.5 4.6 19 19 A T H >X S+ 0 0 71 -4,-1.4 4,-1.9 1,-0.2 3,-1.9 0.901 103.2 61.2 -48.5 -47.3 -9.6 -3.7 6.3 20 20 A Q H 3< S+ 0 0 94 -4,-2.6 -1,-0.2 1,-0.2 -2,-0.2 0.712 106.6 45.9 -58.2 -19.1 -11.1 -5.0 9.3 21 21 A A H << S+ 0 0 63 -3,-1.7 4,-0.3 -4,-0.6 -1,-0.2 0.435 108.3 57.2-103.6 -1.4 -12.3 -7.9 7.4 22 22 A I H X< S+ 0 0 79 -3,-1.9 3,-1.8 -4,-0.6 -2,-0.2 0.858 100.4 49.6 -97.1 -56.7 -9.3 -8.6 5.7 23 23 A E G >< S+ 0 0 100 -4,-1.9 3,-0.8 1,-0.3 4,-0.4 0.676 99.1 74.0 -63.9 -11.7 -7.0 -9.1 8.1 24 24 A Y G 3 S+ 0 0 130 1,-0.4 2,-0.4 -5,-0.3 -1,-0.3 0.874 109.1 26.4 -68.6 -40.3 -9.2 -11.1 9.4 25 25 A N G < S+ 0 0 103 -3,-1.8 -1,-0.4 -4,-0.3 -2,-0.1 -0.625 98.7 88.6-126.8 75.3 -8.6 -13.3 7.2 26 26 A L S < S+ 0 0 100 -3,-0.8 2,-0.3 -2,-0.4 -3,-0.1 0.531 95.8 10.4-130.4 -64.2 -5.4 -12.9 6.0 27 27 A K S S+ 0 0 150 -4,-0.4 2,-0.4 -5,-0.1 -2,-0.1 -0.474 90.3 138.4-123.0 61.2 -2.9 -14.6 7.6 28 28 A R - 0 0 119 -2,-0.3 -3,-0.0 1,-0.1 -4,-0.0 -0.739 36.7 -93.4-107.5 159.1 -4.6 -16.4 9.5 29 29 A T - 0 0 45 1,-0.5 2,-2.1 -2,-0.4 -1,-0.1 -0.229 23.0-170.1 -95.5 75.8 -4.2 -19.4 10.3 30 30 A P + 0 0 18 0, 0.0 -1,-0.5 0, 0.0 -2,-0.0 0.752 12.1 172.2 -42.6 137.3 -4.5 -20.0 10.0 31 31 A R 0 0 70 -2,-2.1 0, 0.0 1,-0.1 0, 0.0 -0.992 360.0 360.0-136.6 171.2 -4.5 -22.5 10.6 32 32 A R 0 0 92 -4,-0.0 -1,-0.1 0, 0.0 -3,-0.0 -0.476 360.0 360.0-164.8 360.0 -5.0 -23.6 10.3