==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 04-DEC-00 1HLY . COMPND 2 MOLECULE: HONGOTOXIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: CENTRUROIDES LIMBATUS; . AUTHOR B.PRAGL,A.KOSCHAK,M.TRIEB,G.OBERMAIR,W.A.KAUFMANN,U.GERSTER, . 39 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2668.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 12.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 78 0, 0.0 35,-1.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 174.7 2.4 0.6 -0.6 2 2 A V - 0 0 91 33,-0.2 2,-0.3 35,-0.0 33,-0.1 -0.973 360.0-176.5-139.0 137.9 3.0 3.5 -3.0 3 3 A I - 0 0 30 -2,-0.4 2,-0.7 2,-0.2 31,-0.5 -0.887 40.2-110.6-123.3 160.0 1.6 3.7 -6.5 4 4 A D + 0 0 85 -2,-0.3 2,-0.7 29,-0.1 29,-0.0 -0.302 69.0 137.3 -91.3 49.2 2.4 6.4 -9.0 5 5 A V - 0 0 34 -2,-0.7 29,-1.9 8,-0.0 2,-0.3 -0.891 49.4-143.9 -92.1 112.9 -1.1 7.7 -8.7 6 6 A K B -A 33 0A 130 -2,-0.7 2,-0.4 27,-0.2 27,-0.3 -0.676 25.3-154.0 -87.7 137.1 -0.6 11.4 -8.5 7 7 A a + 0 0 16 25,-1.8 25,-0.1 -2,-0.3 23,-0.0 -0.903 48.4 176.4-133.1 148.4 -3.0 13.2 -6.2 8 8 A T S S- 0 0 104 1,-0.4 -1,-0.1 -2,-0.4 21,-0.1 0.427 96.1 -7.8-101.7 -14.4 -5.0 16.3 -5.2 9 9 A S S S- 0 0 37 23,-0.1 3,-0.4 21,-0.0 -1,-0.4 -0.949 82.8 -92.1-169.9 167.3 -6.7 14.3 -2.5 10 10 A P S >> S+ 0 0 69 0, 0.0 3,-1.8 0, 0.0 4,-0.9 0.777 107.4 84.3 -64.4 -24.2 -7.0 10.6 -1.3 11 11 A K G >4 S+ 0 0 125 1,-0.3 3,-1.3 2,-0.2 -4,-0.0 0.866 85.0 50.7 -47.6 -53.3 -10.1 10.2 -3.6 12 12 A Q G 34 S+ 0 0 76 -3,-0.4 -1,-0.3 1,-0.3 -6,-0.1 0.583 111.3 48.4 -70.7 -12.6 -8.3 9.5 -6.8 13 13 A b G <> S+ 0 0 0 -3,-1.8 4,-2.2 -4,-0.2 -1,-0.3 0.559 90.7 82.3-100.7 -9.5 -6.1 6.8 -5.3 14 14 A L H >>S+ 0 0 34 0, 0.0 4,-1.6 0, 0.0 5,-0.8 0.877 112.3 53.9 -68.8 -34.6 -6.6 1.7 -7.5 17 17 A c H 3X>S+ 0 0 0 -4,-2.2 5,-1.5 1,-0.3 4,-1.0 0.974 113.0 41.5 -59.4 -51.5 -6.1 0.9 -3.8 18 18 A K H 3<5S+ 0 0 101 -4,-2.6 -1,-0.3 7,-0.2 -4,-0.1 0.513 111.1 65.5 -71.7 -2.3 -9.2 -1.2 -3.8 19 19 A A H <45S- 0 0 75 -3,-0.6 -2,-0.2 -4,-0.2 -1,-0.2 0.974 127.0 -12.7 -71.7 -69.9 -8.2 -2.6 -7.2 20 20 A Q H <5S+ 0 0 134 -4,-1.6 -3,-0.1 1,-0.0 -2,-0.1 0.603 126.3 63.6-115.6 -29.3 -5.1 -4.6 -6.5 21 21 A F T < S+B 33 0A 123 3,-1.8 3,-2.1 -2,-0.3 -23,-0.1 -0.847 73.0 11.3-160.1 148.2 1.4 13.3 0.4 31 31 A N T 3 S- 0 0 124 1,-0.3 3,-0.1 -2,-0.3 -2,-0.0 0.759 129.1 -65.3 58.5 27.0 4.0 15.1 -1.8 32 32 A G T 3 S+ 0 0 39 1,-0.2 -25,-1.8 -26,-0.1 2,-0.3 0.576 119.6 88.4 72.4 14.6 1.5 14.9 -4.7 33 33 A K E < S-AB 6 30A 68 -3,-2.1 -3,-1.8 -27,-0.3 -27,-0.2 -0.958 78.6 -90.8-144.9 154.0 1.5 11.1 -4.8 34 34 A b E - B 0 29A 0 -29,-1.9 2,-0.3 -31,-0.5 -5,-0.2 -0.170 16.7-166.7 -70.5 157.6 -0.3 8.2 -3.1 35 35 A K E - B 0 28A 56 -7,-2.2 -7,-1.5 -33,-0.1 2,-0.3 -0.872 26.1-159.7-142.5 94.1 0.5 6.2 0.0 36 36 A c E - B 0 27A 2 -35,-1.4 -9,-0.3 -2,-0.3 -11,-0.0 -0.642 12.0-147.6 -86.0 137.8 -1.8 3.2 -0.2 37 37 A Y E - B 0 26A 133 -11,-3.0 -11,-2.1 -2,-0.3 2,-2.0 -0.886 10.2-153.1-108.1 98.3 -2.8 1.1 2.8 38 38 A P 0 0 66 0, 0.0 -16,-0.1 0, 0.0 -15,-0.1 -0.466 360.0 360.0 -78.7 76.6 -3.3 -2.5 1.6 39 39 A H 0 0 138 -2,-2.0 -15,-2.8 -17,-0.1 -14,-0.9 -0.131 360.0 360.0-141.1 360.0 -5.8 -3.8 4.2