==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA-BINDING 12-MAY-94 1HMA . COMPND 2 MOLECULE: HMG-D; . SOURCE 2 ORGANISM_SCIENTIFIC: DROSOPHILA MELANOGASTER; . AUTHOR D.N.M.JONES,M.A.SEARLES,G.L.SHAW,M.E.A.CHURCHILL,S.S.NER, . 73 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6293.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 72.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 9.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 43 58.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A S 0 0 117 0, 0.0 2,-0.1 0, 0.0 71,-0.0 0.000 360.0 360.0 360.0 169.4 -1.6 8.8 -18.4 2 3 A D - 0 0 134 1,-0.2 67,-0.1 0, 0.0 66,-0.0 -0.119 360.0 -35.6 -96.1-161.6 -4.2 6.6 -16.6 3 4 A K S S- 0 0 111 1,-0.1 -1,-0.2 66,-0.1 63,-0.1 -0.412 70.3-132.6 -60.8 126.0 -3.9 4.9 -13.2 4 5 A P - 0 0 16 0, 0.0 2,-1.7 0, 0.0 58,-0.1 -0.256 34.6 -80.6 -75.7 164.7 -0.3 3.6 -12.9 5 6 A K - 0 0 178 56,-0.1 3,-0.1 53,-0.0 61,-0.1 -0.461 56.2-140.7 -68.2 90.4 0.7 0.1 -11.7 6 7 A R - 0 0 145 -2,-1.7 2,-0.2 1,-0.1 53,-0.1 -0.158 22.1-101.1 -52.2 149.9 0.2 0.7 -8.0 7 8 A P + 0 0 47 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 -0.455 53.2 161.6 -73.6 141.5 2.9 -1.0 -5.8 8 9 A L - 0 0 68 -2,-0.2 2,-0.1 -3,-0.1 51,-0.1 -0.791 40.2 -59.2-146.7-170.4 1.8 -4.3 -4.1 9 10 A S > - 0 0 73 -2,-0.2 4,-1.6 1,-0.1 3,-0.3 -0.390 41.0-123.6 -77.2 156.8 3.1 -7.4 -2.4 10 11 A A H > S+ 0 0 14 1,-0.2 4,-1.8 2,-0.2 5,-0.3 0.965 112.2 57.8 -66.2 -50.3 5.4 -9.9 -4.2 11 12 A Y H > S+ 0 0 60 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.786 106.2 55.2 -52.0 -22.1 3.1 -12.9 -3.7 12 13 A M H > S+ 0 0 57 -3,-0.3 4,-2.1 2,-0.2 5,-0.3 0.936 98.6 56.8 -78.9 -47.0 0.6 -10.7 -5.5 13 14 A L H >X S+ 0 0 10 -4,-1.6 4,-1.8 1,-0.3 3,-0.5 0.954 111.7 44.3 -49.1 -50.4 2.7 -10.1 -8.6 14 15 A W H 3X S+ 0 0 18 -4,-1.8 4,-1.1 1,-0.2 -1,-0.3 0.918 105.8 62.6 -61.8 -39.0 2.9 -13.9 -9.1 15 16 A L H 3X S+ 0 0 4 -4,-1.3 4,-0.6 -5,-0.3 3,-0.3 0.890 105.7 46.3 -53.7 -37.6 -0.8 -14.1 -8.3 16 17 A N H S+ 0 0 78 -4,-0.2 4,-0.8 1,-0.2 -2,-0.2 0.608 113.8 56.5 -74.0 -6.5 -3.6 -20.3 -15.3 22 23 A I H X S+ 0 0 11 -4,-1.2 4,-1.4 2,-0.1 7,-0.2 0.893 108.6 41.0 -89.8 -46.6 -5.1 -20.5 -11.8 23 24 A K H <>S+ 0 0 127 -4,-1.8 5,-0.9 -5,-0.2 6,-0.2 0.833 114.5 56.3 -71.1 -28.9 -8.8 -20.2 -12.8 24 25 A R H <5S+ 0 0 193 -4,-1.7 4,-0.2 1,-0.2 -2,-0.1 1.000 114.0 34.1 -66.0 -67.5 -8.2 -22.5 -15.9 25 26 A E H <5S+ 0 0 172 -4,-0.8 -1,-0.2 -5,-0.2 -2,-0.2 0.825 116.9 72.7 -58.4 -27.0 -6.8 -25.5 -14.1 26 27 A N T <5S- 0 0 38 -4,-1.4 2,-2.1 -5,-0.1 8,-0.0 -0.616 97.1-110.7 -90.6 152.7 -9.1 -24.7 -11.2 27 28 A P T 5S- 0 0 119 0, 0.0 -3,-0.1 0, 0.0 -2,-0.1 -0.490 75.1 -68.9 -77.9 71.1 -12.9 -25.2 -11.4 28 29 A G S - 0 0 114 1,-0.1 4,-1.0 -3,-0.1 3,-0.1 -0.266 27.8-111.7 -70.7 163.3 -13.8 -18.9 -5.7 31 32 A V H > S+ 0 0 118 1,-0.2 4,-0.7 2,-0.2 -1,-0.1 0.794 118.9 56.1 -67.7 -24.3 -11.6 -15.9 -5.0 32 33 A T H > S+ 0 0 108 1,-0.2 4,-0.7 2,-0.2 -1,-0.2 0.872 112.6 39.4 -76.1 -34.8 -11.4 -17.0 -1.4 33 34 A E H > S+ 0 0 81 1,-0.2 4,-1.3 2,-0.2 5,-0.2 0.567 102.9 73.2 -89.7 -7.5 -10.0 -20.4 -2.3 34 35 A V H X S+ 0 0 9 -4,-1.0 4,-1.7 1,-0.2 -1,-0.2 0.838 98.8 45.7 -74.8 -30.3 -7.9 -18.9 -5.1 35 36 A A H X S+ 0 0 52 -4,-0.7 4,-1.4 2,-0.2 -1,-0.2 0.865 106.2 58.5 -80.4 -35.6 -5.4 -17.5 -2.6 36 37 A K H < S+ 0 0 157 -4,-0.7 4,-0.4 1,-0.2 -2,-0.2 0.922 116.7 34.6 -60.4 -40.6 -5.2 -20.7 -0.5 37 38 A R H >X S+ 0 0 132 -4,-1.3 4,-1.5 1,-0.2 3,-1.3 0.855 110.4 62.7 -82.5 -35.2 -4.0 -22.6 -3.6 38 39 A G H 3X S+ 0 0 1 -4,-1.7 4,-1.7 1,-0.3 -2,-0.2 0.785 98.0 60.2 -61.3 -22.1 -2.0 -19.6 -5.0 39 40 A G H 3X S+ 0 0 32 -4,-1.4 4,-1.4 2,-0.2 -1,-0.3 0.784 100.8 53.9 -77.1 -24.6 0.1 -19.8 -1.9 40 41 A E H <> S+ 0 0 101 -3,-1.3 4,-0.7 -4,-0.4 -2,-0.2 0.958 113.6 38.9 -74.7 -49.8 1.2 -23.4 -2.7 41 42 A L H X S+ 0 0 80 -4,-1.5 4,-1.6 2,-0.2 3,-0.4 0.904 110.1 62.7 -67.2 -38.1 2.5 -22.7 -6.2 42 43 A W H < S+ 0 0 21 -4,-1.7 3,-0.3 -5,-0.3 -1,-0.2 0.944 117.0 28.7 -52.5 -49.4 4.0 -19.3 -5.0 43 44 A R H < S+ 0 0 201 -4,-1.4 -1,-0.3 1,-0.2 -2,-0.2 0.489 121.7 55.9 -91.2 -1.8 6.3 -21.2 -2.6 44 45 A A H < S+ 0 0 69 -4,-0.7 -2,-0.2 -3,-0.4 -1,-0.2 0.478 98.7 66.4-106.0 -4.1 6.4 -24.3 -4.9 45 46 A M S < S- 0 0 59 -4,-1.6 -3,-0.1 -3,-0.3 -2,-0.1 0.674 113.1 -64.3 -83.6-113.5 7.6 -22.5 -8.0 46 47 A K S S- 0 0 158 1,-0.4 2,-0.2 -4,-0.2 -4,-0.0 0.761 83.1 -60.0-105.9 -78.5 11.1 -20.9 -8.0 47 48 A D - 0 0 103 1,-0.1 -1,-0.4 -3,-0.0 4,-0.3 -0.856 32.6-113.1-155.4-170.2 11.5 -18.1 -5.5 48 49 A K S > S+ 0 0 70 -2,-0.2 4,-1.9 2,-0.1 5,-0.4 0.656 93.3 87.7-110.0 -23.7 10.2 -14.6 -4.6 49 50 A S H > S+ 0 0 93 1,-0.2 4,-1.2 3,-0.2 5,-0.4 0.824 86.2 63.8 -46.5 -26.9 13.2 -12.5 -5.4 50 51 A E H > S+ 0 0 109 2,-0.1 4,-1.5 3,-0.1 -1,-0.2 0.999 117.3 20.0 -62.3 -65.9 11.7 -12.4 -8.8 51 52 A W H > S+ 0 0 40 -4,-0.3 4,-2.4 2,-0.2 5,-0.3 0.988 120.5 61.1 -68.8 -59.1 8.5 -10.6 -7.9 52 53 A E H >X S+ 0 0 103 -4,-1.9 4,-1.3 1,-0.3 3,-0.7 0.883 111.6 39.5 -33.7 -63.2 9.6 -9.0 -4.7 53 54 A A H 3X S+ 0 0 63 -4,-1.2 4,-1.5 -5,-0.4 3,-0.5 0.932 111.0 60.7 -57.2 -41.7 12.4 -7.1 -6.5 54 55 A K H 3X S+ 0 0 120 -4,-1.5 4,-1.9 -5,-0.4 -1,-0.3 0.882 97.3 59.5 -53.8 -37.1 9.9 -6.4 -9.3 55 56 A A H X S+ 0 0 134 -4,-2.1 4,-2.8 -3,-0.2 3,-0.8 0.975 106.9 39.6 -54.0 -59.4 7.7 1.7 -6.8 60 61 A D H 3X S+ 0 0 108 -4,-1.9 4,-1.5 1,-0.3 5,-0.3 0.960 121.5 42.9 -58.1 -50.3 10.1 4.0 -8.6 61 62 A D H 3< S+ 0 0 94 -4,-2.4 4,-0.5 -5,-0.2 -1,-0.3 0.578 116.5 54.1 -72.1 -5.9 7.9 4.1 -11.8 62 63 A Y H > S+ 0 0 32 -4,-0.5 4,-2.3 -5,-0.3 3,-0.8 0.922 102.9 65.4 -79.0 -43.9 4.2 8.4 -12.6 66 67 A V H 3X S+ 0 0 17 -4,-2.1 4,-2.3 1,-0.3 5,-0.3 0.903 95.1 63.0 -46.1 -39.9 1.3 8.7 -10.1 67 68 A K H >X S+ 0 0 151 -4,-0.7 4,-1.4 1,-0.2 3,-0.7 0.964 105.0 44.3 -50.1 -51.6 2.1 12.4 -10.0 68 69 A E H << S+ 0 0 122 -3,-0.8 3,-0.4 -4,-0.7 -1,-0.2 0.924 113.8 52.1 -57.9 -40.7 1.2 12.5 -13.7 69 70 A F H 3< S+ 0 0 54 -4,-2.3 3,-0.3 1,-0.2 -1,-0.3 0.749 113.4 43.2 -65.7 -26.4 -1.8 10.4 -12.8 70 71 A E H X< S+ 0 0 134 -4,-2.3 3,-0.5 -3,-0.7 -1,-0.2 0.561 97.0 77.3 -97.1 -11.0 -2.7 12.9 -10.1 71 72 A A T 3< S+ 0 0 77 -4,-1.4 -1,-0.2 -3,-0.4 -2,-0.1 -0.006 70.3 89.1 -87.8 31.4 -2.0 15.8 -12.4 72 73 A N T 3 0 0 115 -3,-0.3 -1,-0.2 1,-0.2 -2,-0.1 0.123 360.0 360.0-113.5 20.9 -5.3 15.3 -14.2 73 74 A G < 0 0 138 -3,-0.5 -1,-0.2 0, 0.0 -2,-0.1 0.753 360.0 360.0 -45.2 360.0 -7.4 17.5 -11.8