==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 11-JUL-06 2HM5 . COMPND 2 MOLECULE: NEMATOCYST OUTER WALL ANTIGEN; . SOURCE 2 ORGANISM_SCIENTIFIC: HYDRA VULGARIS; . AUTHOR S.MEIER,P.R.JENSEN,S.GRZESIEK,S.OEZBEK . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2888.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 10 32.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 117 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.9 17.6 10.5 1.4 2 2 A S + 0 0 130 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.564 360.0 25.1-133.0 -45.9 19.1 7.5 -0.5 3 3 A Q S S+ 0 0 157 1,-0.0 3,-0.0 3,-0.0 0, 0.0 0.706 86.5 171.2 -96.2 -25.1 16.4 5.0 -1.1 4 4 A I - 0 0 139 1,-0.1 2,-0.4 2,-0.0 -2,-0.0 0.165 41.3 -66.0 41.8-166.2 13.5 7.5 -1.0 5 5 A T - 0 0 68 1,-0.2 5,-0.1 2,-0.1 -1,-0.1 -0.947 36.2-161.5-120.6 138.9 10.0 6.4 -2.1 6 6 A G S S- 0 0 80 -2,-0.4 -1,-0.2 3,-0.1 -2,-0.0 0.925 77.5 -18.4 -78.6 -91.2 8.8 5.3 -5.5 7 7 A T S S+ 0 0 135 1,-0.1 -2,-0.1 2,-0.1 17,-0.0 0.898 121.3 74.5 -84.9 -50.3 5.1 5.4 -6.0 8 8 A a S S- 0 0 9 1,-0.1 -1,-0.1 2,-0.1 -2,-0.1 -0.569 76.1-147.4 -72.1 116.1 3.9 5.5 -2.4 9 9 A P >> - 0 0 64 0, 0.0 3,-1.2 0, 0.0 4,-1.2 -0.027 35.2 -84.5 -72.3-176.7 4.5 9.0 -0.8 10 10 A S H >> S+ 0 0 90 1,-0.3 4,-2.9 2,-0.2 3,-0.7 0.896 126.6 65.3 -53.5 -45.4 5.4 9.8 2.8 11 11 A G H 3> S+ 0 0 32 1,-0.3 4,-0.9 2,-0.2 -1,-0.3 0.832 100.6 51.2 -49.7 -34.6 1.7 9.8 3.6 12 12 A b H <4 S+ 0 0 2 -3,-1.2 -1,-0.3 2,-0.2 -2,-0.2 0.859 107.2 52.3 -72.6 -35.1 1.8 6.1 2.8 13 13 A S H << S+ 0 0 55 -4,-1.2 13,-0.7 -3,-0.7 -2,-0.2 0.950 128.9 21.0 -66.2 -43.9 4.8 5.5 5.1 14 14 A G H < S+ 0 0 52 -4,-2.9 2,-1.1 1,-0.3 -3,-0.2 0.950 131.3 36.9 -84.2 -76.3 3.0 7.3 7.9 15 15 A D S < S- 0 0 126 -4,-0.9 2,-2.0 -5,-0.1 -1,-0.3 -0.683 74.7-155.0 -83.9 103.5 -0.7 7.1 7.1 16 16 A c - 0 0 72 -2,-1.1 -4,-0.1 -3,-0.2 -1,-0.1 -0.521 19.3-174.1 -77.3 78.8 -1.3 3.8 5.5 17 17 A Y > - 0 0 96 -2,-2.0 3,-1.8 -6,-0.1 8,-0.1 -0.291 38.1-101.9 -72.4 160.6 -4.4 4.6 3.5 18 18 A P T 3 S+ 0 0 134 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.817 118.4 58.6 -52.6 -39.9 -6.1 1.7 1.6 19 19 A E T 3 S+ 0 0 177 2,-0.1 -3,-0.0 0, 0.0 -7,-0.0 0.639 78.4 108.8 -72.5 -7.8 -4.8 2.6 -1.8 20 20 A b S < S- 0 0 13 -3,-1.8 3,-0.1 1,-0.1 4,-0.1 -0.522 77.8-120.1 -67.5 123.5 -1.2 2.2 -0.5 21 21 A P > - 0 0 59 0, 0.0 3,-1.6 0, 0.0 4,-0.3 -0.308 45.9 -69.6 -65.7 147.2 0.1 -1.1 -2.1 22 22 A P T 3 S+ 0 0 132 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.072 118.9 8.8 -37.3 139.0 1.2 -3.9 0.3 23 23 A G T 3 S+ 0 0 55 -3,-0.1 -3,-0.0 1,-0.1 0, 0.0 0.628 96.5 112.4 61.5 15.8 4.3 -3.4 2.3 24 24 A a < + 0 0 37 -3,-1.6 3,-0.5 -4,-0.1 2,-0.3 0.875 64.7 63.5 -83.1 -39.6 4.4 0.3 1.2 25 25 A c S S+ 0 0 36 -4,-0.3 -12,-0.2 1,-0.2 -11,-0.1 -0.650 116.4 1.8 -88.1 141.7 3.6 1.7 4.6 26 26 A G S S+ 0 0 68 -13,-0.7 -1,-0.2 -2,-0.3 3,-0.1 0.939 89.7 124.4 48.0 58.5 6.1 1.2 7.5 27 27 A Q + 0 0 128 -3,-0.5 2,-0.3 1,-0.1 -1,-0.1 0.276 56.3 66.5-125.7 4.2 8.6 -0.7 5.4 28 28 A V + 0 0 97 -15,-0.1 2,-0.3 -4,-0.1 -1,-0.1 -0.688 66.8 108.9-132.1 80.6 11.7 1.4 6.0 29 29 A N - 0 0 136 -2,-0.3 2,-0.0 -3,-0.1 0, 0.0 -0.857 52.0-152.7-156.6 115.6 12.8 1.2 9.6 30 30 A L 0 0 190 -2,-0.3 -2,-0.0 0, 0.0 0, 0.0 0.097 360.0 360.0 -76.4 26.7 15.8 -0.6 11.0 31 31 A N 0 0 202 -2,-0.0 -2,-0.1 0, 0.0 0, 0.0 -0.107 360.0 360.0 -95.0 360.0 13.9 -1.0 14.3