==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 10-DEC-00 1HO9 . COMPND 2 MOLECULE: ALPHA-2A ADRENERGIC RECEPTOR; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.A.CHUNG,E.R.ZUIDERWEG,R.R.NEUBIG . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3824.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 68.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 18.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T >> 0 0 160 0, 0.0 3,-2.0 0, 0.0 4,-0.9 0.000 360.0 360.0 360.0 -37.1 -1.2 26.5 5.6 2 2 A S H 3> + 0 0 109 1,-0.3 4,-0.8 2,-0.2 0, 0.0 0.593 360.0 71.2 -67.4 -9.9 -2.8 24.4 8.3 3 3 A S H 3> S+ 0 0 87 2,-0.2 4,-1.2 1,-0.2 -1,-0.3 0.675 92.6 56.6 -78.6 -18.9 -5.3 23.4 5.6 4 4 A I H <> S+ 0 0 101 -3,-2.0 4,-3.4 2,-0.2 3,-0.3 0.963 101.2 51.6 -75.2 -56.8 -2.5 21.4 4.0 5 5 A V H X S+ 0 0 99 -4,-0.9 4,-3.4 1,-0.2 5,-0.2 0.804 103.9 65.6 -49.4 -31.0 -1.7 19.2 7.0 6 6 A H H X S+ 0 0 116 -4,-0.8 4,-1.6 2,-0.2 -1,-0.2 0.980 111.0 29.9 -55.2 -64.2 -5.5 18.6 7.0 7 7 A L H X S+ 0 0 93 -4,-1.2 4,-3.7 -3,-0.3 -2,-0.2 0.864 116.8 63.4 -64.0 -37.1 -5.5 16.7 3.7 8 8 A C H X S+ 0 0 70 -4,-3.4 4,-3.8 2,-0.2 -2,-0.2 0.965 102.2 48.0 -49.9 -63.3 -2.0 15.5 4.4 9 9 A A H X S+ 0 0 50 -4,-3.4 4,-2.7 1,-0.2 5,-0.2 0.928 114.5 45.2 -41.0 -67.5 -3.1 13.6 7.4 10 10 A I H X S+ 0 0 97 -4,-1.6 4,-2.9 1,-0.2 5,-0.3 0.920 115.1 48.7 -42.1 -59.6 -6.0 12.0 5.5 11 11 A S H X S+ 0 0 49 -4,-3.7 4,-1.9 1,-0.2 -1,-0.2 0.940 109.2 52.1 -46.0 -61.0 -3.8 11.3 2.6 12 12 A L H >< S+ 0 0 104 -4,-3.8 3,-1.4 1,-0.2 -1,-0.2 0.915 110.3 48.7 -40.7 -60.6 -1.1 9.7 4.8 13 13 A I H >X S+ 0 0 110 -4,-2.7 3,-3.4 1,-0.3 4,-0.5 0.933 109.9 50.5 -45.4 -58.6 -3.6 7.4 6.4 14 14 A R H 3< S+ 0 0 200 -4,-2.9 -1,-0.3 1,-0.3 -2,-0.2 0.755 120.2 38.7 -52.5 -25.3 -4.9 6.4 2.9 15 15 A Y T << S+ 0 0 138 -4,-1.9 4,-0.3 -3,-1.4 -1,-0.3 0.004 84.3 106.0-114.1 24.9 -1.3 5.8 2.2 16 16 A W T X> + 0 0 145 -3,-3.4 2,-3.5 1,-0.2 3,-1.3 0.879 60.3 81.3 -69.9 -39.0 -0.4 4.4 5.6 17 17 A S T 3< S+ 0 0 101 -4,-0.5 -1,-0.2 1,-0.2 -4,-0.0 -0.348 88.0 56.4 -68.0 67.6 -0.2 0.9 4.0 18 18 A I T 34 S+ 0 0 83 -2,-3.5 -1,-0.2 -3,-0.0 -2,-0.1 0.257 94.8 55.5-160.4 -44.9 3.3 1.6 2.8 19 19 A T T X4 S+ 0 0 89 -3,-1.3 3,-1.2 -4,-0.3 4,-0.5 0.968 103.4 55.3 -65.7 -56.0 5.4 2.5 5.7 20 20 A Q T 3< S+ 0 0 139 -4,-0.8 2,-0.7 1,-0.3 4,-0.3 0.892 120.4 33.0 -42.3 -52.1 4.7 -0.6 7.8 21 21 A A T 3 S+ 0 0 52 1,-0.2 -1,-0.3 3,-0.1 -2,-0.1 -0.615 91.0 102.6-108.8 69.2 5.8 -2.7 4.8 22 22 A I S < S+ 0 0 80 -3,-1.2 4,-0.2 -2,-0.7 -1,-0.2 0.707 97.3 8.3-113.7 -43.1 8.5 -0.5 3.4 23 23 A E S > S+ 0 0 140 -4,-0.5 4,-1.6 -3,-0.3 3,-0.4 0.827 125.4 55.5-104.1 -59.9 11.7 -2.1 4.6 24 24 A Y T 4 S+ 0 0 165 -4,-0.3 -3,-0.1 1,-0.3 -4,-0.1 0.877 106.8 54.8 -40.4 -51.9 10.7 -5.4 6.2 25 25 A N T >4 S+ 0 0 91 1,-0.2 3,-0.9 -5,-0.1 -1,-0.3 0.932 101.9 58.0 -48.8 -54.1 9.0 -6.4 2.9 26 26 A L T 34 S+ 0 0 157 -3,-0.4 2,-1.2 1,-0.3 -1,-0.2 0.916 114.8 36.3 -40.6 -61.6 12.2 -5.7 1.1 27 27 A K T 3< S- 0 0 150 -4,-1.6 -1,-0.3 0, 0.0 -2,-0.1 -0.613 95.4-159.4 -96.8 72.5 14.0 -8.3 3.2 28 28 A R < + 0 0 193 -2,-1.2 -3,-0.1 -3,-0.9 -2,-0.0 0.121 66.0 52.0 -44.0 166.3 11.1 -10.8 3.6 29 29 A T S S- 0 0 112 1,-0.0 -1,-0.1 3,-0.0 -4,-0.0 0.993 79.6-166.1 62.0 66.2 11.3 -13.2 6.4 30 30 A P + 0 0 68 0, 0.0 -2,-0.0 0, 0.0 -1,-0.0 -0.118 45.8 44.7 -75.0 176.5 11.9 -10.7 9.3 31 31 A R 0 0 208 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.541 360.0 360.0 61.1 142.3 13.0 -11.6 12.8 32 32 A R 0 0 268 0, 0.0 -3,-0.0 0, 0.0 0, 0.0 0.190 360.0 360.0 -49.9 360.0 15.8 -14.1 13.4