==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 10-DEC-00 1HOD . COMPND 2 MOLECULE: ALPHA-2A ADRENERGIC RECEPTOR; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.A.CHUNG,E.R.ZUIDERWEG,R.R.NEUBIG . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3101.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 65.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 43.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T >> 0 0 134 0, 0.0 3,-1.5 0, 0.0 4,-1.2 0.000 360.0 360.0 360.0 -29.6 3.7 23.1 7.2 2 2 A S H 3> + 0 0 90 1,-0.3 4,-0.9 2,-0.2 5,-0.1 0.581 360.0 69.5 -75.0 -7.0 1.4 21.5 8.9 3 3 A S H 3> S+ 0 0 88 2,-0.2 4,-1.0 1,-0.1 -1,-0.3 0.602 95.3 54.3 -85.3 -14.3 -0.2 20.8 6.0 4 4 A I H <> S+ 0 0 98 -3,-1.5 4,-2.5 2,-0.2 -2,-0.2 0.935 101.2 54.6 -84.0 -52.1 2.4 18.6 4.9 5 5 A V H X S+ 0 0 92 -4,-1.2 4,-2.7 1,-0.3 5,-0.2 0.901 105.2 57.4 -49.1 -46.7 2.5 16.4 7.8 6 6 A H H X S+ 0 0 107 -4,-0.9 4,-2.0 2,-0.2 -1,-0.3 0.941 107.3 45.2 -49.8 -58.0 -0.9 15.9 7.2 7 7 A L H X S+ 0 0 97 -4,-1.0 4,-1.4 1,-0.2 -1,-0.2 0.853 112.3 53.9 -60.5 -32.9 -0.4 14.7 3.9 8 8 A C H < S+ 0 0 67 -4,-2.5 4,-0.3 2,-0.2 -2,-0.2 0.999 105.3 50.2 -64.8 -59.9 2.4 12.7 5.0 9 9 A A H >X S+ 0 0 44 -4,-2.7 3,-2.2 1,-0.3 4,-1.7 0.941 110.4 51.8 -47.0 -56.7 0.6 10.8 7.6 10 10 A I H 3X S+ 0 0 102 -4,-2.0 4,-1.0 1,-0.3 -1,-0.3 0.919 113.3 44.0 -46.3 -53.1 -2.0 10.1 5.3 11 11 A S H 3< S+ 0 0 60 -4,-1.4 -1,-0.3 -5,-0.2 -2,-0.2 0.279 106.7 65.2 -78.5 13.8 0.4 8.8 2.9 12 12 A L H <4 S+ 0 0 93 -3,-2.2 -2,-0.2 -4,-0.3 -1,-0.2 0.860 97.9 46.4 -99.5 -55.1 2.2 7.0 5.5 13 13 A I H >X S+ 0 0 112 -4,-1.7 3,-3.2 1,-0.3 4,-0.6 0.983 111.9 50.5 -55.5 -61.2 -0.1 4.4 6.7 14 14 A R T 3< S+ 0 0 175 -4,-1.0 -1,-0.3 1,-0.3 -3,-0.1 0.793 115.1 47.8 -49.0 -29.5 -1.1 3.4 3.3 15 15 A Y T 34 S+ 0 0 139 -5,-0.2 4,-0.4 -3,-0.2 -1,-0.3 -0.035 88.3 96.3-103.1 29.8 2.5 3.1 2.7 16 16 A W T <4 + 0 0 160 -3,-3.2 2,-1.0 1,-0.2 3,-0.4 0.708 63.0 66.7 -90.6 -89.2 3.2 1.3 5.7 17 17 A S S < S+ 0 0 94 -4,-0.6 -1,-0.2 1,-0.3 -4,-0.0 0.413 96.9 61.7 -28.6 53.8 3.4 -2.3 4.9 18 18 A I S > S+ 0 0 87 -2,-1.0 3,-1.8 -3,-0.2 -1,-0.3 0.346 82.0 69.1-152.3 -45.1 6.4 -1.7 2.8 19 19 A T T >> S+ 0 0 81 -3,-0.4 3,-1.9 -4,-0.4 4,-1.0 0.898 89.8 67.8 -51.9 -44.1 9.0 -0.5 5.0 20 20 A Q H 3> S+ 0 0 107 1,-0.3 4,-0.6 -4,-0.2 -1,-0.3 0.839 107.3 41.0 -46.4 -33.7 9.2 -3.7 6.6 21 21 A A H <4 S+ 0 0 52 -3,-1.8 -1,-0.3 3,-0.1 -2,-0.1 -0.267 95.4 80.4-108.5 46.6 10.4 -5.0 3.5 22 22 A I H <> S+ 0 0 91 -3,-1.9 4,-1.1 3,-0.1 -2,-0.2 0.768 104.1 23.8-111.9 -57.9 12.6 -2.4 2.5 23 23 A E H X S+ 0 0 92 -4,-1.0 4,-1.6 2,-0.2 -2,-0.1 0.929 119.2 53.9 -82.2 -52.7 15.4 -3.1 4.3 24 24 A Y H < S+ 0 0 145 -4,-0.6 -1,-0.2 -5,-0.4 -3,-0.1 0.887 112.1 51.0 -47.2 -44.1 15.1 -6.5 5.0 25 25 A N H 4 S+ 0 0 101 1,-0.2 3,-0.3 -5,-0.1 -1,-0.3 0.884 102.3 58.8 -63.0 -45.7 14.8 -6.9 1.8 26 26 A L H < S+ 0 0 94 -4,-1.1 2,-0.5 1,-0.2 -1,-0.2 0.688 121.8 20.5 -59.3 -18.4 17.4 -5.2 1.2 27 27 A K S < S+ 0 0 88 -4,-1.6 -1,-0.2 -5,-0.1 2,-0.1 -0.639 72.3 174.6-145.1 104.9 19.0 -7.1 2.9 28 28 A R + 0 0 114 -2,-0.5 -3,-0.1 -3,-0.3 4,-0.1 -0.903 10.0 149.0-119.4 138.3 18.5 -9.8 3.7 29 29 A T - 0 0 52 -2,-0.1 -1,-0.1 2,-0.1 2,-0.0 -0.800 27.7-126.8-166.8 116.4 19.9 -11.6 4.9 30 30 A P - 0 0 50 0, 0.0 2,-0.4 0, 0.0 -2,-0.0 -0.264 15.8-141.8 -67.5 132.5 19.7 -13.3 6.3 31 31 A R 0 0 93 1,-0.1 -2,-0.1 -2,-0.0 0, 0.0 -0.985 360.0 360.0-111.5 126.4 20.5 -14.2 8.3 32 32 A R 0 0 102 -2,-0.4 -1,-0.1 -4,-0.1 -4,-0.0 -0.708 360.0 360.0-166.6 360.0 21.0 -15.5 9.1