==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 12-DEC-00 1HP3 . COMPND 2 MOLECULE: OMEGA-ATRACOTOXIN-HV2A; . SOURCE 2 SYNTHETIC: YES; . AUTHOR X.-H.WANG,G.F.KING . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2780.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 28.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 191 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 103.7 -14.7 -5.9 -1.4 2 2 A L + 0 0 162 16,-0.0 2,-0.4 17,-0.0 3,-0.0 -0.788 360.0 165.3-148.6 101.6 -11.1 -6.5 -0.5 3 3 A A + 0 0 46 -2,-0.3 16,-1.4 1,-0.1 17,-0.2 -0.510 59.3 71.6-114.9 64.3 -8.4 -3.7 -0.8 4 4 A a + 0 0 59 -2,-0.4 14,-0.2 14,-0.3 -1,-0.1 -0.476 34.4 148.4-176.0 96.3 -5.5 -5.2 1.1 5 5 A L S S+ 0 0 134 12,-0.4 13,-0.1 -2,-0.1 -1,-0.0 -0.004 73.8 48.8-123.8 28.6 -3.4 -8.1 -0.1 6 6 A F - 0 0 78 2,-0.1 3,-0.1 5,-0.0 11,-0.1 0.528 60.4-168.2-128.2 -75.2 -0.0 -7.2 1.5 7 7 A G + 0 0 58 1,-0.3 2,-0.2 3,-0.0 10,-0.1 0.814 60.2 91.4 82.6 30.3 -0.1 -6.3 5.2 8 8 A N S S- 0 0 102 2,-0.1 -1,-0.3 0, 0.0 10,-0.2 -0.771 83.5-111.7-140.7-173.9 3.5 -4.9 5.2 9 9 A G S S+ 0 0 46 -2,-0.2 2,-0.4 -3,-0.1 20,-0.2 0.103 88.1 85.0-112.8 22.7 5.3 -1.6 4.7 10 10 A R + 0 0 178 18,-0.3 18,-0.3 6,-0.1 2,-0.3 -0.976 50.0 150.0-126.2 135.8 7.0 -2.5 1.4 11 11 A b - 0 0 18 16,-0.9 3,-0.1 -2,-0.4 6,-0.1 -0.907 43.7-139.0-150.3 179.9 5.4 -2.1 -2.1 12 12 A S S S+ 0 0 106 1,-0.3 2,-0.3 -2,-0.3 3,-0.1 0.226 86.5 4.0-129.2 9.2 6.1 -1.5 -5.8 13 13 A S S > S- 0 0 58 1,-0.1 3,-1.1 10,-0.1 -1,-0.3 -0.953 82.0 -91.9 179.5 164.5 3.2 0.9 -6.6 14 14 A N G > S+ 0 0 86 -2,-0.3 3,-1.5 1,-0.3 -1,-0.1 0.920 125.4 51.1 -59.6 -42.7 0.2 2.7 -5.0 15 15 A R G 3 S+ 0 0 231 1,-0.3 -1,-0.3 -3,-0.1 8,-0.1 0.633 95.4 73.3 -71.6 -9.6 -2.1 -0.3 -5.7 16 16 A D G < S+ 0 0 56 -3,-1.1 -1,-0.3 -12,-0.1 -2,-0.2 0.489 89.7 75.0 -81.8 -0.6 0.5 -2.6 -4.1 17 17 A c S < S- 0 0 7 -3,-1.5 -12,-0.4 -4,-0.2 2,-0.1 -0.368 85.5-102.8-101.3-175.6 -0.5 -1.3 -0.7 18 18 A a - 0 0 8 -10,-0.2 3,-0.4 -14,-0.2 -14,-0.3 -0.338 39.4 -92.5 -98.3-176.0 -3.6 -2.0 1.5 19 19 A E S S+ 0 0 132 -16,-1.4 -15,-0.1 1,-0.2 -1,-0.1 0.949 126.1 55.0 -64.1 -47.4 -6.7 0.2 2.1 20 20 A L S S+ 0 0 121 1,-0.2 -1,-0.2 -17,-0.2 -16,-0.1 0.758 115.8 43.4 -58.8 -20.7 -5.2 1.8 5.3 21 21 A T + 0 0 19 -3,-0.4 -1,-0.2 10,-0.1 10,-0.2 -0.821 61.1 166.5-130.0 94.1 -2.2 2.8 3.0 22 22 A P + 0 0 74 0, 0.0 2,-0.3 0, 0.0 9,-0.2 0.259 62.1 71.6 -88.6 10.3 -3.4 4.1 -0.5 23 23 A V E -A 30 0A 26 7,-1.6 7,-2.2 -5,-0.1 2,-0.4 -0.949 55.8-167.9-128.7 149.8 0.1 5.5 -1.3 24 24 A b E +A 29 0A 17 -2,-0.3 2,-0.4 5,-0.2 3,-0.3 -0.774 22.8 160.6-136.2 90.0 3.4 3.7 -2.2 25 25 A K E > +A 28 0A 155 3,-1.7 3,-1.3 -2,-0.4 -14,-0.1 -0.885 67.7 6.4-114.4 145.3 6.4 6.1 -2.0 26 26 A R T 3 S- 0 0 230 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.823 129.6 -65.6 58.4 28.5 10.1 5.1 -1.8 27 27 A G T 3 S+ 0 0 38 -3,-0.3 -16,-0.9 1,-0.2 2,-0.4 0.864 116.4 112.2 63.4 32.8 8.9 1.5 -2.1 28 28 A S E < -A 25 0A 42 -3,-1.3 -3,-1.7 -18,-0.3 -18,-0.3 -0.985 69.4-123.0-140.8 127.8 7.1 1.8 1.2 29 29 A c E +A 24 0A 15 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.398 37.8 170.2 -68.1 143.5 3.3 1.9 1.9 30 30 A V E -A 23 0A 55 -7,-2.2 -7,-1.6 -2,-0.1 2,-0.6 -0.983 44.8-117.0-150.7 159.3 2.0 5.0 3.6 31 31 A S 0 0 84 -2,-0.3 -10,-0.1 -10,-0.2 -7,-0.1 -0.233 360.0 360.0 -93.2 47.3 -1.4 6.6 4.5 32 32 A S 0 0 148 -2,-0.6 -1,-0.1 -9,-0.0 -11,-0.1 0.633 360.0 360.0 60.2 360.0 -0.7 9.7 2.4