==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-FEB-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 14-FEB-95 1HPH . COMPND 2 MOLECULE: HUMAN PARATHYROID HORMONE FRAGMENT 1 - 37; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR U.C.MARX,P.ROESCH . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3727.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 62.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 35.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 127 0, 0.0 3,-0.5 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 165.4 -16.3 1.8 9.1 2 2 A V + 0 0 142 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.582 360.0 19.8 -86.9 150.8 -19.0 -0.3 7.3 3 3 A S S > S+ 0 0 100 -2,-0.2 3,-0.5 1,-0.1 -1,-0.2 0.899 75.0 147.9 60.2 42.3 -18.1 -2.5 4.2 4 4 A E T 3 + 0 0 68 -3,-0.5 -1,-0.1 1,-0.2 7,-0.1 -0.104 53.5 71.8 -97.9 37.5 -14.4 -2.6 5.1 5 5 A I T > + 0 0 134 3,-0.3 2,-2.3 4,-0.1 3,-1.5 0.251 45.2 130.1-137.3 17.6 -13.8 -6.2 3.8 6 6 A Q T <> S- 0 0 129 -3,-0.5 4,-0.6 1,-0.3 0, 0.0 -0.453 119.0 -25.2 -67.5 74.1 -13.9 -5.7 -0.1 7 7 A L T >4 S- 0 0 127 -2,-2.3 3,-2.1 2,-0.3 -1,-0.3 0.964 129.9 -42.0 74.3 45.3 -10.5 -7.7 -0.3 8 8 A M G X4 S- 0 0 123 -3,-1.5 3,-1.1 1,-0.3 -3,-0.3 0.871 102.3 -72.0 58.8 28.3 -10.3 -6.2 3.4 9 9 A H G 34 S- 0 0 51 1,-0.2 -1,-0.3 2,-0.0 -2,-0.3 0.825 72.1 -91.4 47.0 39.7 -11.7 -3.3 1.2 10 10 A N G << S+ 0 0 67 -3,-2.1 -1,-0.2 -4,-0.6 2,-0.2 0.817 74.0 173.3 23.8 62.5 -8.1 -3.3 -0.1 11 11 A L < + 0 0 82 -3,-1.1 -1,-0.1 -4,-0.3 2,-0.0 -0.646 22.6 159.6 -94.4 150.7 -7.0 -0.8 2.5 12 12 A G S S- 0 0 18 -2,-0.2 4,-0.1 0, 0.0 11,-0.0 -0.390 85.2 -37.9-171.3 78.7 -3.5 0.5 3.3 13 13 A K S S- 0 0 139 1,-0.2 3,-0.2 2,-0.1 -2,-0.0 0.903 119.6 -53.2 62.7 38.8 -3.3 3.9 5.1 14 14 A H S S- 0 0 135 1,-0.2 2,-0.6 5,-0.0 -1,-0.2 0.985 79.6-151.9 58.6 56.0 -6.3 5.0 3.0 15 15 A L + 0 0 25 -5,-0.1 -1,-0.2 4,-0.1 -2,-0.1 -0.481 23.0 173.5 -66.1 111.1 -4.5 4.0 -0.2 16 16 A N > - 0 0 109 -2,-0.6 4,-1.9 -3,-0.2 5,-0.2 -0.154 49.5 -77.8-101.3-162.3 -5.8 6.3 -3.1 17 17 A S H > S+ 0 0 102 2,-0.2 4,-1.6 1,-0.2 5,-0.2 0.974 132.9 37.4 -67.7 -53.6 -4.6 6.6 -6.8 18 18 A M H > S+ 0 0 151 1,-0.2 4,-1.1 2,-0.2 -1,-0.2 0.729 117.5 53.9 -71.9 -19.5 -1.5 8.8 -6.0 19 19 A E H > S+ 0 0 45 2,-0.2 4,-2.6 3,-0.1 -1,-0.2 0.849 106.5 51.0 -82.1 -35.7 -0.9 6.8 -2.8 20 20 A R H X S+ 0 0 74 -4,-1.9 4,-2.6 2,-0.2 -2,-0.2 0.880 109.3 50.0 -70.8 -36.4 -0.8 3.4 -4.6 21 21 A V H X S+ 0 0 53 -4,-1.6 4,-1.3 2,-0.2 -1,-0.2 0.926 117.4 40.1 -68.0 -40.4 1.7 4.6 -7.2 22 22 A E H X S+ 0 0 64 -4,-1.1 4,-2.1 2,-0.2 -2,-0.2 0.891 111.7 59.0 -73.7 -36.8 4.0 5.9 -4.4 23 23 A W H X S+ 0 0 89 -4,-2.6 4,-2.9 1,-0.2 3,-0.2 0.952 104.6 49.9 -52.5 -53.9 3.1 2.7 -2.4 24 24 A L H X S+ 0 0 66 -4,-2.6 4,-1.5 2,-0.2 -1,-0.2 0.875 105.8 55.9 -56.5 -38.9 4.5 0.7 -5.3 25 25 A R H X S+ 0 0 128 -4,-1.3 4,-0.9 1,-0.2 -1,-0.2 0.922 112.5 42.8 -61.9 -39.2 7.7 2.9 -5.2 26 26 A K H < S+ 0 0 121 -4,-2.1 3,-0.4 -3,-0.2 -2,-0.2 0.893 110.3 56.1 -72.6 -37.9 8.1 1.9 -1.4 27 27 A K H >X S+ 0 0 74 -4,-2.9 4,-2.5 1,-0.2 3,-0.9 0.752 98.7 63.3 -66.6 -19.7 7.1 -1.8 -2.3 28 28 A L H 3< S+ 0 0 117 -4,-1.5 2,-0.5 1,-0.3 4,-0.3 0.927 107.2 41.4 -69.8 -41.4 10.1 -1.8 -4.8 29 29 A Q T 3< S+ 0 0 135 -4,-0.9 6,-0.3 -3,-0.4 -1,-0.3 -0.342 122.5 44.2 -98.5 49.8 12.5 -1.2 -1.8 30 30 A D T X> S+ 0 0 48 -3,-0.9 3,-2.3 -2,-0.5 4,-1.2 0.318 88.8 75.7-155.9 -43.6 10.5 -3.8 0.3 31 31 A V T 3< S+ 0 0 94 -4,-2.5 -3,-0.1 1,-0.3 -2,-0.1 0.742 108.0 39.0 -54.2 -23.8 9.8 -6.8 -1.9 32 32 A H T 34 S+ 0 0 176 -4,-0.3 -1,-0.3 -5,-0.2 -4,-0.1 0.035 138.4 10.5-115.6 25.5 13.5 -7.9 -1.5 33 33 A N T <4 S- 0 0 62 -3,-2.3 -2,-0.2 2,-0.0 -3,-0.1 0.268 72.2-150.7-164.2 -49.3 13.9 -7.0 2.3 34 34 A F < + 0 0 138 -4,-1.2 2,-0.4 1,-0.2 -4,-0.1 0.975 49.5 132.9 61.0 57.4 10.5 -6.0 4.1 35 35 A V - 0 0 90 -6,-0.3 2,-1.2 2,-0.1 -1,-0.2 -0.995 55.6-144.4-140.7 133.9 12.1 -3.6 6.6 36 36 A A 0 0 113 -2,-0.4 -6,-0.1 -6,-0.0 0, 0.0 -0.498 360.0 360.0 -94.2 65.6 11.0 -0.0 7.6 37 37 A L 0 0 211 -2,-1.2 -2,-0.1 0, 0.0 0, 0.0 -0.932 360.0 360.0-155.9 360.0 14.6 1.4 8.1