==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT 31-MAR-98 2HQI . COMPND 2 MOLECULE: MERCURIC TRANSPORT PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: SHIGELLA FLEXNERI; . AUTHOR H.QIAN,L.SAHLMAN,P.O.ERIKSSON,C.HAMBREUS,U.EDLUND,I.SETHSON . 72 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4181.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 65.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 17 23.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 20.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 116 0, 0.0 48,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 170.1 2.0 -4.0 4.3 2 2 A T - 0 0 74 46,-0.2 2,-0.5 1,-0.1 46,-0.3 0.061 360.0-119.5 -51.5 175.4 2.5 -5.6 0.9 3 3 A Q E +A 47 0A 11 44,-3.6 44,-2.8 27,-0.2 2,-0.5 -0.749 50.4 146.6-127.0 89.4 -0.0 -4.8 -1.8 4 4 A T E +A 46 0A 77 -2,-0.5 2,-0.2 42,-0.3 42,-0.2 -0.774 44.2 80.8-121.5 83.8 -1.8 -8.0 -3.0 5 5 A V E S-A 45 0A 55 40,-1.7 40,-1.9 -2,-0.5 2,-0.2 -0.883 84.6 -54.7-161.7-167.0 -5.4 -7.0 -3.8 6 6 A T E -AB 44 71A 28 65,-1.3 65,-3.3 -2,-0.2 2,-0.4 -0.607 47.2-160.7 -86.4 147.6 -7.6 -5.4 -6.5 7 7 A L E -AB 43 70A 0 36,-1.7 36,-2.5 63,-0.3 63,-0.3 -0.988 15.3-128.5-130.6 137.0 -6.6 -1.9 -7.8 8 8 A A E -AB 42 69A 22 61,-1.6 61,-1.0 -2,-0.4 34,-0.2 -0.627 21.7-160.7 -83.3 138.6 -8.8 0.6 -9.6 9 9 A V > - 0 0 5 32,-0.5 3,-0.7 -2,-0.3 59,-0.2 -0.931 6.0-148.2-125.7 111.6 -7.3 1.9 -12.9 10 10 A P T 3 S+ 0 0 49 0, 0.0 2,-1.9 0, 0.0 11,-0.1 0.323 73.5 72.0 -56.6-162.1 -8.6 5.2 -14.3 11 11 A G T > + 0 0 18 6,-0.1 3,-2.3 7,-0.1 2,-0.3 -0.361 55.6 153.0 84.9 -60.6 -8.6 5.7 -18.1 12 12 A M T < S+ 0 0 86 -2,-1.9 30,-0.1 -3,-0.7 5,-0.1 -0.022 80.7 24.0 36.8 -90.6 -11.5 3.2 -18.6 13 13 A T T 3 S+ 0 0 124 -2,-0.3 -1,-0.3 3,-0.1 2,-0.1 0.303 98.4 127.3 -82.4 13.2 -12.9 4.7 -21.7 14 14 A a S < S- 0 0 34 -3,-2.3 -2,-0.0 1,-0.2 0, 0.0 -0.440 80.9-108.1 -70.2 143.8 -9.5 6.3 -22.5 15 15 A A S S- 0 0 99 1,-0.2 -1,-0.2 -2,-0.1 23,-0.0 0.810 97.4 -39.9 -42.1 -27.6 -8.1 5.5 -26.0 16 16 A A S S+ 0 0 43 -5,-0.0 4,-0.3 22,-0.0 -1,-0.2 0.255 97.0 130.0 167.0 39.2 -5.7 3.3 -24.0 17 17 A a S >> S+ 0 0 32 1,-0.2 3,-1.8 2,-0.2 4,-1.3 0.943 78.9 50.3 -75.1 -46.1 -4.6 5.0 -20.9 18 18 A P H 3> S+ 0 0 0 0, 0.0 4,-2.1 0, 0.0 5,-0.2 0.838 91.0 78.2 -62.2 -29.8 -5.3 2.1 -18.5 19 19 A I H 3> S+ 0 0 55 1,-0.2 4,-0.7 2,-0.2 -2,-0.2 0.851 104.1 38.9 -48.6 -27.6 -3.3 -0.1 -20.9 20 20 A T H <> S+ 0 0 42 -3,-1.8 4,-3.7 -4,-0.3 -1,-0.2 0.868 102.0 68.4 -90.3 -41.0 -0.4 1.5 -19.1 21 21 A V H X S+ 0 0 0 -4,-1.3 4,-2.2 1,-0.2 -2,-0.2 0.924 97.1 58.2 -44.4 -46.7 -1.8 1.6 -15.6 22 22 A K H >X S+ 0 0 71 -4,-2.1 4,-1.5 1,-0.2 3,-1.0 0.970 112.7 35.9 -47.2 -68.5 -1.5 -2.2 -15.6 23 23 A K H 3X S+ 0 0 108 -4,-0.7 4,-1.5 1,-0.3 5,-0.4 0.938 108.0 70.2 -51.9 -45.0 2.2 -2.1 -16.3 24 24 A A H >X S+ 0 0 10 -4,-3.7 4,-1.8 2,-0.2 3,-0.5 0.894 102.5 43.6 -40.2 -49.0 2.4 1.0 -14.0 25 25 A L H X< S+ 0 0 0 -4,-2.2 3,-0.6 -3,-1.0 -1,-0.2 0.999 122.6 35.1 -63.7 -63.5 1.6 -1.3 -11.0 26 26 A S H 3< S+ 0 0 44 -4,-1.5 -1,-0.2 1,-0.2 -2,-0.2 0.404 117.7 58.8 -72.7 8.8 4.0 -4.1 -12.0 27 27 A K H << S+ 0 0 135 -4,-1.5 -1,-0.2 -3,-0.5 -2,-0.2 0.729 96.5 62.5-107.3 -29.1 6.4 -1.5 -13.4 28 28 A V S X< S- 0 0 13 -4,-1.8 3,-0.6 -3,-0.6 2,-0.1 0.117 105.3 -64.3 -77.5-159.1 7.1 0.6 -10.3 29 29 A E T 3 S+ 0 0 79 1,-0.2 24,-0.2 24,-0.1 -1,-0.2 -0.505 115.5 40.8 -87.9 161.3 8.7 -0.8 -7.1 30 30 A G T 3 S+ 0 0 9 1,-0.2 18,-0.7 17,-0.2 -27,-0.2 0.336 77.3 157.8 86.4 -10.1 7.1 -3.5 -4.9 31 31 A V < + 0 0 50 -3,-0.6 -1,-0.2 16,-0.3 16,-0.2 0.044 7.0 142.2 -41.1 159.3 5.9 -5.4 -8.1 32 32 A S + 0 0 87 1,-0.6 2,-0.3 15,-0.1 15,-0.2 0.125 67.4 1.3-168.1 -51.0 5.3 -9.1 -7.5 33 33 A K E -C 46 0A 116 13,-2.0 13,-1.2 2,-0.0 -1,-0.6 -0.875 65.5-156.5-141.9 172.2 2.3 -10.2 -9.5 34 34 A V E +C 45 0A 44 -2,-0.3 11,-0.3 11,-0.3 2,-0.1 -0.976 25.8 159.6-159.8 146.7 -0.0 -8.4 -11.9 35 35 A D E +C 44 0A 104 9,-2.3 9,-3.0 -2,-0.3 2,-0.3 -0.560 35.8 127.1-164.8 86.7 -3.5 -8.5 -13.5 36 36 A V E +C 43 0A 21 7,-0.3 2,-0.3 -2,-0.1 7,-0.3 -0.984 22.9 168.5-144.5 156.2 -4.7 -5.2 -15.0 37 37 A G E > -C 42 0A 16 5,-2.4 5,-1.6 -2,-0.3 3,-0.3 -0.992 38.7-137.3-167.2 159.3 -6.0 -4.0 -18.3 38 38 A F T 5S+ 0 0 53 -2,-0.3 -19,-0.1 3,-0.2 -21,-0.1 0.600 79.8 101.6 -94.4 -15.8 -7.7 -1.1 -20.2 39 39 A E T 5S- 0 0 135 3,-0.1 -1,-0.2 -21,-0.1 -20,-0.0 0.839 117.0 -16.7 -39.2 -30.6 -10.1 -3.4 -22.0 40 40 A K T 5S- 0 0 131 -3,-0.3 -2,-0.1 2,-0.1 -1,-0.1 0.325 105.8 -78.9-137.1 -82.6 -12.5 -2.1 -19.4 41 41 A R T 5S+ 0 0 103 -28,-0.1 -32,-0.5 -30,-0.1 2,-0.4 0.045 74.2 127.0 169.6 61.5 -10.9 -0.4 -16.3 42 42 A E E < -AC 8 37A 86 -5,-1.6 -5,-2.4 -34,-0.2 2,-0.5 -0.990 31.8-169.5-136.6 133.6 -9.6 -2.9 -13.7 43 43 A A E +AC 7 36A 0 -36,-2.5 -36,-1.7 -2,-0.4 2,-0.5 -0.753 13.4 170.9-123.1 89.2 -6.1 -3.0 -12.1 44 44 A V E +AC 6 35A 50 -9,-3.0 -9,-2.3 -2,-0.5 2,-0.3 -0.827 20.2 140.4 -97.2 127.6 -5.6 -6.2 -10.1 45 45 A V E -AC 5 34A 1 -40,-1.9 -40,-1.7 -2,-0.5 2,-0.4 -0.992 45.9-135.6-158.0 166.9 -2.0 -6.7 -8.9 46 46 A T E +AC 4 33A 19 -13,-1.2 -13,-2.0 -2,-0.3 -42,-0.3 -0.802 41.9 142.9-132.8 95.0 0.1 -7.9 -6.1 47 47 A F E -A 3 0A 2 -44,-2.8 -44,-3.6 -2,-0.4 2,-0.3 -0.509 30.2-149.1-115.7-173.2 3.1 -5.6 -5.4 48 48 A D > - 0 0 27 -18,-0.7 3,-1.0 -46,-0.3 4,-0.3 -0.997 28.3-117.7-162.4 155.1 4.4 -4.7 -2.0 49 49 A D T 3 S+ 0 0 60 -2,-0.3 -47,-0.1 -48,-0.3 -19,-0.1 0.450 79.6 113.0 -74.4 3.7 6.2 -2.0 0.1 50 50 A T T 3 S- 0 0 116 1,-0.3 -1,-0.2 -20,-0.2 3,-0.0 0.856 111.1 -5.7 -45.0 -29.9 9.2 -4.4 0.6 51 51 A K S < S+ 0 0 160 -3,-1.0 -1,-0.3 -20,-0.0 2,-0.2 0.190 142.9 23.6-148.9 13.7 10.9 -1.7 -1.6 52 52 A A - 0 0 12 -4,-0.3 2,-0.3 -23,-0.1 -22,-0.1 -0.718 68.1-125.7-154.5-154.2 8.0 0.6 -2.5 53 53 A S > - 0 0 39 -24,-0.2 4,-2.4 -2,-0.2 5,-0.2 -0.984 28.5-104.6-162.2 166.5 4.6 1.8 -1.4 54 54 A V H > S+ 0 0 40 -2,-0.3 4,-2.4 2,-0.2 5,-0.5 0.979 121.5 45.5 -66.0 -53.2 1.0 2.1 -2.7 55 55 A Q H > S+ 0 0 150 1,-0.2 4,-3.7 3,-0.2 5,-0.3 0.920 111.1 56.7 -57.0 -39.3 1.2 5.9 -3.2 56 56 A K H > S+ 0 0 101 2,-0.2 4,-3.1 3,-0.2 5,-0.3 0.984 112.8 38.3 -56.4 -58.2 4.6 5.4 -4.8 57 57 A L H X S+ 0 0 1 -4,-2.4 4,-2.5 2,-0.2 -2,-0.2 0.993 123.8 40.0 -56.6 -65.0 3.2 3.0 -7.5 58 58 A T H X S+ 0 0 24 -4,-2.4 4,-4.0 1,-0.2 5,-0.4 0.919 114.5 55.5 -51.9 -43.9 -0.1 4.9 -8.0 59 59 A K H X S+ 0 0 121 -4,-3.7 4,-1.1 -5,-0.5 -1,-0.2 0.975 110.2 43.6 -55.6 -53.1 1.8 8.2 -7.7 60 60 A A H < S+ 0 0 30 -4,-3.1 -1,-0.2 -5,-0.3 -2,-0.2 0.850 116.2 51.3 -61.3 -29.4 4.2 7.2 -10.5 61 61 A T H >< S+ 0 0 2 -4,-2.5 3,-2.0 -5,-0.3 5,-0.5 0.964 109.5 45.8 -73.2 -50.8 1.1 5.9 -12.4 62 62 A A H 3< S+ 0 0 57 -4,-4.0 3,-0.5 1,-0.3 -1,-0.2 0.669 106.4 64.7 -66.2 -11.2 -0.9 9.1 -12.0 63 63 A D T 3< S+ 0 0 111 -4,-1.1 -1,-0.3 -5,-0.4 -2,-0.2 0.468 100.7 49.4 -90.2 0.2 2.3 10.9 -13.1 64 64 A A S < S- 0 0 52 -3,-2.0 -1,-0.2 2,-0.2 -2,-0.2 0.268 121.2 -99.6-119.1 9.9 2.1 9.3 -16.5 65 65 A G S S+ 0 0 56 -3,-0.5 -3,-0.1 -4,-0.2 -4,-0.1 -0.037 108.8 79.5 96.4 -33.3 -1.5 10.1 -17.4 66 66 A Y + 0 0 76 -5,-0.5 -2,-0.2 -6,-0.2 -3,-0.2 -0.909 62.2 167.9-111.1 109.9 -2.6 6.6 -16.4 67 67 A P - 0 0 28 0, 0.0 2,-0.3 0, 0.0 -42,-0.1 -0.100 17.3-145.5-103.3-155.9 -2.9 6.2 -12.7 68 68 A S - 0 0 14 -59,-0.2 2,-0.3 -10,-0.2 -59,-0.3 -0.886 3.9-153.8-156.8-173.2 -4.4 3.5 -10.4 69 69 A S E -B 8 0A 48 -61,-1.0 -61,-1.6 -2,-0.3 2,-0.2 -0.982 29.5 -93.8-166.3 161.3 -6.3 3.0 -7.1 70 70 A V E +B 7 0A 78 -63,-0.3 2,-0.3 -2,-0.3 -63,-0.3 -0.570 46.9 163.4 -84.6 149.1 -6.8 0.3 -4.3 71 71 A K E B 6 0A 113 -65,-3.3 -65,-1.3 -2,-0.2 -2,-0.0 -0.993 360.0 360.0-159.0 159.2 -9.8 -2.0 -4.5 72 72 A Q 0 0 208 -2,-0.3 -67,-0.1 -67,-0.2 -65,-0.0 -0.535 360.0 360.0-129.4 360.0 -11.0 -5.3 -3.1