==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION ACTIVATOR 25-JUL-06 2HTJ . COMPND 2 MOLECULE: P FIMBRIAL REGULATORY PROTEIN KS71A; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR T.KAWAMURA,H.ZHOU,L.U.K.LE,F.W.DAHLQUIST . 81 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 48 59.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 6.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 32.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M >> 0 0 153 0, 0.0 4,-0.9 0, 0.0 3,-0.7 0.000 360.0 360.0 360.0 99.3 8.9 -1.4 11.4 2 2 A K H 3> + 0 0 103 1,-0.2 4,-2.6 2,-0.2 3,-0.4 0.864 360.0 69.4 -64.1 -32.4 7.4 -3.1 8.3 3 3 A N H 3> S+ 0 0 111 1,-0.3 4,-2.5 2,-0.2 5,-0.3 0.895 97.4 51.8 -53.9 -38.2 3.9 -2.6 9.7 4 4 A E H <> S+ 0 0 92 -3,-0.7 4,-1.6 2,-0.2 -1,-0.3 0.876 110.0 49.0 -68.2 -34.5 4.3 1.2 9.1 5 5 A I H X S+ 0 0 3 -4,-0.9 4,-2.1 -3,-0.4 -2,-0.2 0.938 116.0 41.0 -71.8 -45.1 5.3 0.6 5.5 6 6 A L H X S+ 0 0 36 -4,-2.6 4,-1.5 2,-0.2 -2,-0.2 0.959 116.9 48.0 -68.7 -48.0 2.4 -1.8 4.7 7 7 A E H X S+ 0 0 138 -4,-2.5 4,-1.5 -5,-0.3 -1,-0.2 0.899 110.9 53.6 -60.0 -36.9 -0.2 0.3 6.6 8 8 A F H X S+ 0 0 48 -4,-1.6 4,-1.9 -5,-0.3 -1,-0.2 0.953 105.4 51.6 -64.0 -47.4 1.1 3.4 4.8 9 9 A L H < S+ 0 0 4 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.2 0.822 103.5 62.9 -60.4 -26.8 0.7 1.9 1.4 10 10 A N H < S+ 0 0 105 -4,-1.5 -1,-0.2 1,-0.2 -2,-0.2 0.980 104.6 42.7 -63.6 -54.4 -2.9 1.1 2.4 11 11 A R H < S+ 0 0 230 -4,-1.5 -2,-0.2 -3,-0.1 -1,-0.2 0.931 132.6 17.3 -58.9 -43.1 -4.0 4.7 2.9 12 12 A H S < S- 0 0 137 -4,-1.9 2,-0.1 3,-0.0 3,-0.1 -0.117 72.2-153.0-108.4-151.4 -2.2 5.7 -0.3 13 13 A N + 0 0 83 1,-0.3 45,-0.1 -2,-0.1 -4,-0.1 -0.426 57.7 39.8 170.7 108.8 -0.8 3.7 -3.3 14 14 A G + 0 0 48 43,-0.4 -1,-0.3 1,-0.2 2,-0.3 0.557 59.0 138.4 109.3 100.4 2.0 4.4 -5.7 15 15 A G - 0 0 13 42,-0.2 42,-1.9 -3,-0.1 -1,-0.2 -0.884 50.4-105.2-170.7 136.6 5.3 5.9 -4.5 16 16 A K > - 0 0 42 -2,-0.3 4,-3.0 40,-0.2 40,-0.2 -0.062 41.3-105.9 -57.7 168.7 9.0 5.3 -5.2 17 17 A T H > S+ 0 0 21 37,-1.6 4,-2.8 38,-0.3 5,-0.2 0.996 123.2 41.5 -64.1 -60.3 11.1 3.5 -2.5 18 18 A A H > S+ 0 0 58 1,-0.2 4,-1.5 2,-0.2 -1,-0.2 0.794 116.9 53.4 -58.9 -20.5 12.9 6.6 -1.3 19 19 A E H > S+ 0 0 85 2,-0.2 4,-1.7 35,-0.2 -1,-0.2 0.900 105.8 50.2 -80.2 -39.7 9.5 8.3 -1.7 20 20 A I H X S+ 0 0 2 -4,-3.0 4,-1.7 1,-0.2 5,-0.3 0.917 108.7 54.4 -63.7 -38.0 7.8 5.7 0.5 21 21 A A H X>S+ 0 0 4 -4,-2.8 4,-3.3 1,-0.2 5,-0.7 0.933 103.3 55.1 -61.7 -43.2 10.5 6.3 3.1 22 22 A E H <5S+ 0 0 142 -4,-1.5 -1,-0.2 1,-0.2 -2,-0.2 0.898 103.9 56.0 -58.6 -36.7 9.8 10.0 3.1 23 23 A A H <5S+ 0 0 54 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.930 121.0 28.2 -62.5 -42.5 6.1 9.2 3.9 24 24 A L H <5S- 0 0 27 -4,-1.7 -2,-0.2 -3,-0.1 -1,-0.2 0.665 90.9-150.5 -92.0 -16.8 7.2 7.2 7.0 25 25 A A T <5 + 0 0 85 -4,-3.3 -3,-0.2 -5,-0.3 -4,-0.1 0.779 57.3 124.2 53.7 22.4 10.4 9.2 7.6 26 26 A V S > - 0 0 67 1,-0.2 4,-3.6 2,-0.1 3,-1.3 -0.609 55.5-167.0 -93.4 79.5 15.0 4.3 7.9 28 28 A D H 3> S+ 0 0 88 -2,-1.4 4,-2.8 1,-0.3 5,-0.3 0.840 90.2 53.3 -32.5 -45.2 14.5 4.8 4.1 29 29 A Y H 3> S+ 0 0 187 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.955 116.5 36.7 -60.6 -46.8 17.4 2.3 3.7 30 30 A Q H <> S+ 0 0 102 -3,-1.3 4,-1.3 2,-0.2 -2,-0.2 0.863 113.5 59.5 -74.0 -32.7 15.6 -0.2 5.9 31 31 A A H >X S+ 0 0 2 -4,-3.6 4,-1.9 2,-0.2 3,-0.7 0.972 107.8 43.9 -59.8 -52.3 12.3 0.8 4.5 32 32 A R H 3X S+ 0 0 117 -4,-2.8 4,-1.8 -5,-0.3 -1,-0.2 0.950 109.8 55.9 -59.0 -47.6 13.3 -0.2 0.9 33 33 A Y H 3X S+ 0 0 145 -4,-1.8 4,-1.8 -5,-0.3 -1,-0.3 0.788 106.4 54.7 -57.5 -22.8 14.9 -3.4 2.1 34 34 A Y H X>S+ 0 0 21 -4,-3.2 4,-1.4 1,-0.2 3,-1.3 0.925 105.2 60.6 -64.6 -41.5 7.8 -8.6 1.8 39 39 A E H 3<5S+ 0 0 60 -4,-2.7 -1,-0.2 -5,-0.4 -2,-0.2 0.857 97.8 60.8 -55.3 -31.4 7.6 -8.7 -2.0 40 40 A K H 3<5S+ 0 0 174 -4,-1.6 -1,-0.3 -3,-0.4 -2,-0.2 0.849 103.7 49.2 -66.3 -30.3 9.1 -12.2 -1.8 41 41 A A H <<5S- 0 0 79 -3,-1.3 -1,-0.2 -4,-0.8 -2,-0.2 0.785 114.9-117.0 -79.7 -25.5 6.1 -13.4 0.3 42 42 A G T <5S+ 0 0 36 -4,-1.4 -3,-0.2 2,-0.2 -2,-0.1 0.547 86.3 113.0 101.0 8.9 3.6 -11.9 -2.1 43 43 A M S + 0 0 114 3,-0.1 3,-2.2 2,-0.1 2,-0.6 0.058 69.6 162.6 -99.0 27.4 -10.0 -15.3 -4.3 68 68 A S G > S- 0 0 48 1,-0.3 3,-2.2 -4,-0.2 -3,-0.0 -0.217 89.0 -33.0 -48.6 97.0 -13.1 -13.1 -4.7 69 69 A C G > S- 0 0 84 -2,-0.6 3,-1.1 1,-0.3 -1,-0.3 0.705 102.7 -83.4 60.0 13.9 -15.6 -15.4 -2.9 70 70 A S G < - 0 0 71 -3,-2.2 -1,-0.3 1,-0.2 -2,-0.2 0.633 58.9-101.2 66.1 8.2 -13.4 -18.2 -4.4 71 71 A S G < S+ 0 0 72 -3,-2.2 3,-0.4 1,-0.2 -1,-0.2 0.911 80.9 142.0 42.8 48.4 -15.4 -17.8 -7.6 72 72 A T < + 0 0 108 -3,-1.1 -1,-0.2 1,-0.2 3,-0.1 0.127 56.0 63.8-104.4 21.8 -17.5 -20.9 -6.5 73 73 A T S S+ 0 0 116 1,-0.1 -1,-0.2 4,-0.0 4,-0.1 -0.080 79.8 77.3-134.0 36.9 -20.8 -19.5 -7.8 74 74 A L S S+ 0 0 134 -3,-0.4 -1,-0.1 2,-0.1 -2,-0.1 0.196 82.5 63.1-129.7 15.4 -20.3 -19.2 -11.6 75 75 A E S S- 0 0 174 -3,-0.1 3,-0.2 4,-0.0 4,-0.2 0.069 108.7-102.2-127.5 25.2 -20.6 -22.8 -12.7 76 76 A H - 0 0 163 1,-0.2 2,-1.3 2,-0.1 3,-0.2 0.773 42.5 -91.0 56.9 117.2 -24.3 -23.5 -11.8 77 77 A H S S- 0 0 136 1,-0.2 -1,-0.2 -4,-0.1 -4,-0.0 -0.355 97.0 -33.8 -59.7 92.9 -24.6 -25.6 -8.5 78 78 A H S S- 0 0 131 -2,-1.3 -1,-0.2 -3,-0.2 3,-0.2 0.863 89.2 -93.6 57.1 105.0 -24.6 -29.1 -10.2 79 79 A H S S+ 0 0 138 -3,-0.2 2,-4.0 1,-0.2 -3,-0.0 -0.002 109.9 9.1 -42.6 153.3 -26.3 -28.9 -13.6 80 80 A H 0 0 166 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 -0.194 360.0 360.0 67.2 -58.9 -30.1 -29.7 -13.3 81 81 A H 0 0 156 -2,-4.0 -3,-0.1 -3,-0.2 -2,-0.1 0.005 360.0 360.0 39.8 360.0 -29.8 -29.7 -9.5