==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 26-JUL-06 2HUG . COMPND 2 MOLECULE: SIGNAL RECOGNITION PARTICLE 43 KDA PROTEIN, . SOURCE 2 ORGANISM_SCIENTIFIC: ARABIDOPSIS THALIANA; . AUTHOR K.M.KATHIR,S.VAITHIYALINGAM,R.HENRY,S.K.K.THALLAPURANAM . 71 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5174.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 45.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 8.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 16.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 8.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 40 0, 0.0 3,-0.1 0, 0.0 50,-0.1 0.000 360.0 360.0 360.0 33.3 10.9 3.6 -6.2 2 2 A S + 0 0 79 1,-0.5 2,-0.4 3,-0.1 50,-0.1 0.153 360.0 90.8 177.0 -32.2 11.1 6.4 -3.7 3 3 A Q - 0 0 57 1,-0.1 2,-0.8 2,-0.1 -1,-0.5 -0.689 66.9-140.1 -87.4 136.7 7.8 6.5 -1.7 4 4 A V S S+ 0 0 36 -2,-0.4 14,-1.0 47,-0.1 2,-0.2 -0.261 79.5 32.6 -90.9 48.3 7.7 4.4 1.5 5 5 A F - 0 0 67 -2,-0.8 2,-0.4 15,-0.2 15,-0.1 -0.851 63.4-141.8 171.1 154.1 4.2 3.2 0.9 6 6 A E - 0 0 14 -2,-0.2 2,-0.5 2,-0.0 19,-0.3 -0.991 19.9-125.6-134.7 142.4 1.6 2.2 -1.8 7 7 A Y - 0 0 96 -2,-0.4 2,-0.2 1,-0.1 58,-0.1 -0.748 16.5-171.9 -89.8 122.3 -2.2 2.7 -2.0 8 8 A A + 0 0 2 -2,-0.5 56,-1.4 56,-0.2 2,-0.2 -0.393 42.4 126.4-107.2 53.5 -4.2 -0.5 -2.5 9 9 A E - 0 0 38 -2,-0.2 18,-0.2 54,-0.1 4,-0.1 -0.497 60.8-137.4-106.4 176.8 -7.6 1.2 -3.1 10 10 A V S S- 0 0 43 2,-0.4 19,-0.1 -2,-0.2 -1,-0.1 0.664 96.1 -18.8-104.1 -24.3 -10.2 1.1 -5.8 11 11 A D S S+ 0 0 79 1,-0.4 2,-0.3 19,-0.0 18,-0.1 0.406 126.6 5.9-150.5 -39.6 -10.9 4.8 -6.0 12 12 A E - 0 0 84 -4,-0.1 16,-2.0 0, 0.0 -1,-0.4 -0.979 51.6-163.4-152.5 162.7 -9.6 6.6 -2.9 13 13 A I - 0 0 46 -2,-0.3 14,-0.1 14,-0.2 3,-0.1 -0.603 9.3-166.0-131.7-168.5 -7.7 6.1 0.4 14 14 A V + 0 0 82 1,-0.5 2,-0.3 -2,-0.2 -1,-0.1 0.375 69.3 55.3-150.2 -49.0 -7.1 7.8 3.7 15 15 A E + 0 0 75 9,-0.1 -1,-0.5 2,-0.0 11,-0.3 -0.724 52.0 175.2 -98.6 146.1 -4.2 6.4 5.6 16 16 A K + 0 0 125 -2,-0.3 2,-0.2 9,-0.1 9,-0.1 -0.616 28.1 119.1-152.9 89.6 -0.7 6.2 4.2 17 17 A R + 0 0 211 -2,-0.2 7,-0.3 -11,-0.1 2,-0.2 -0.606 45.2 80.7-154.5 87.6 2.2 4.9 6.4 18 18 A G - 0 0 22 -14,-1.0 5,-0.2 1,-0.3 22,-0.1 -0.489 69.3 -77.9-152.3-137.7 4.1 1.8 5.4 19 19 A K S S- 0 0 59 -2,-0.2 -1,-0.3 23,-0.1 26,-0.1 0.270 77.4 -52.4-115.6-122.5 6.8 0.2 3.2 20 20 A G S S- 0 0 0 22,-0.3 -15,-0.2 50,-0.2 23,-0.1 0.844 132.8 -14.9 -90.3 -42.1 6.6 -0.8 -0.4 21 21 A K B S+A 42 0A 13 21,-0.7 21,-0.7 49,-0.2 20,-0.2 0.197 119.4 91.6-140.7 7.3 3.5 -2.8 0.1 22 22 A D + 0 0 28 19,-0.2 2,-0.2 18,-0.2 21,-0.2 0.276 65.3 109.9 -88.8 10.1 3.5 -3.1 3.9 23 23 A V - 0 0 1 19,-0.2 2,-0.8 -5,-0.2 18,-0.3 -0.601 65.4-138.7 -88.0 150.0 1.4 0.1 4.1 24 24 A E + 0 0 87 -7,-0.3 16,-0.1 16,-0.3 15,-0.1 -0.818 33.1 166.4-112.3 93.1 -2.2 0.1 5.2 25 25 A Y - 0 0 10 -2,-0.8 13,-4.2 -19,-0.3 2,-0.3 -0.046 31.2-112.8 -88.2-167.7 -4.2 2.5 3.0 26 26 A L E -B 37 0B 16 -11,-0.3 2,-0.4 11,-0.3 11,-0.3 -0.882 18.1-146.6-126.5 160.6 -7.9 2.8 2.7 27 27 A V E -B 36 0B 0 9,-3.5 2,-2.1 -2,-0.3 9,-1.7 -0.891 12.5-163.8-139.2 110.7 -10.2 2.0 -0.2 28 28 A R E -B 35 0B 101 -16,-2.0 7,-0.2 -2,-0.4 4,-0.2 -0.600 44.4-124.3 -84.8 74.2 -13.4 3.8 -1.1 29 29 A W > - 0 0 80 -2,-2.1 3,-2.0 5,-0.5 5,-0.1 0.119 12.8-139.5 -26.7 90.8 -14.3 0.9 -3.3 30 30 A K T 3 S+ 0 0 155 1,-0.3 -1,-0.2 -18,-0.1 2,-0.1 0.735 104.5 35.9 -27.4 -37.4 -14.8 2.8 -6.5 31 31 A D T 3 S+ 0 0 111 0, 0.0 -1,-0.3 0, 0.0 2,-0.3 -0.447 111.7 78.8-120.0 56.8 -17.8 0.5 -7.0 32 32 A G S < S- 0 0 46 -3,-2.0 3,-0.1 -4,-0.2 -4,-0.0 -0.853 71.0-128.6-148.6-178.0 -19.0 0.2 -3.4 33 33 A G S S+ 0 0 90 -2,-0.3 2,-0.3 1,-0.0 -1,-0.1 0.531 87.9 48.5-115.1 -13.4 -20.9 1.9 -0.6 34 34 A D S S- 0 0 104 -5,-0.1 2,-0.5 -7,-0.1 -5,-0.5 -0.854 72.7-128.4-126.7 162.5 -18.3 1.6 2.2 35 35 A C E -B 28 0B 57 -2,-0.3 -7,-0.2 -7,-0.2 2,-0.2 -0.948 26.9-173.4-116.1 118.7 -14.6 2.3 2.6 36 36 A E E -B 27 0B 83 -9,-1.7 -9,-3.5 -2,-0.5 2,-0.2 -0.682 24.9-104.6-108.6 163.9 -12.3 -0.4 4.0 37 37 A W E -B 26 0B 182 -11,-0.3 -11,-0.3 -2,-0.2 26,-0.2 -0.565 29.2-125.6 -87.9 148.4 -8.7 -0.4 5.0 38 38 A V - 0 0 7 -13,-4.2 2,-0.9 -2,-0.2 27,-0.1 -0.472 35.6 -91.2 -87.6 161.9 -5.9 -2.0 3.0 39 39 A K > + 0 0 111 25,-0.5 3,-0.6 -2,-0.2 -16,-0.1 -0.644 39.1 178.5 -80.8 106.9 -3.4 -4.6 4.3 40 40 A G T 3 + 0 0 12 -2,-0.9 -16,-0.3 1,-0.2 -18,-0.2 -0.183 63.4 86.4 -99.2 39.3 -0.4 -2.8 5.7 41 41 A V T 3 + 0 0 98 -18,-0.3 2,-2.5 -20,-0.2 -1,-0.2 0.339 50.3 115.1-113.3 0.0 1.3 -6.0 6.8 42 42 A H B < -A 21 0A 27 -21,-0.7 2,-2.2 -3,-0.6 -21,-0.7 -0.455 58.3-155.6 -77.1 77.8 3.0 -6.6 3.5 43 43 A V + 0 0 48 -2,-2.5 2,-0.6 28,-0.2 3,-0.3 -0.274 27.3 164.4 -57.3 77.4 6.5 -6.2 4.8 44 44 A A >> + 0 0 2 -2,-2.2 4,-3.0 1,-0.2 3,-0.7 -0.317 9.3 154.5 -92.4 49.3 8.1 -5.3 1.5 45 45 A E H 3> S+ 0 0 98 -2,-0.6 4,-3.0 1,-0.3 5,-0.2 0.773 75.0 53.9 -48.3 -27.5 11.1 -4.0 3.4 46 46 A D H 3> S+ 0 0 121 -3,-0.3 4,-1.9 2,-0.2 -1,-0.3 0.903 109.4 44.5 -75.0 -43.1 12.9 -4.8 0.1 47 47 A V H <4 S+ 0 0 15 -3,-0.7 4,-0.4 23,-0.3 -2,-0.2 0.944 122.6 39.3 -63.9 -46.8 10.5 -2.7 -2.0 48 48 A A H X>S+ 0 0 4 -4,-3.0 4,-2.6 2,-0.3 5,-1.2 0.938 118.3 45.5 -66.4 -55.0 10.7 0.1 0.6 49 49 A K H <5S+ 0 0 115 -4,-3.0 -3,-0.2 -5,-0.3 -1,-0.2 0.844 123.7 38.3 -60.3 -33.3 14.4 -0.2 1.4 50 50 A D T <5S+ 0 0 95 -4,-1.9 -1,-0.3 3,-0.3 -2,-0.3 0.548 117.1 54.8 -91.7 -11.4 14.9 -0.4 -2.4 51 51 A Y T >5S+ 0 0 47 -4,-0.4 4,-0.6 -3,-0.3 -3,-0.2 0.952 130.2 5.9 -84.0 -63.3 12.1 2.2 -3.0 52 52 A E H X5S+ 0 0 73 -4,-2.6 4,-1.6 2,-0.1 -3,-0.2 0.886 145.1 35.0 -87.6 -46.7 13.2 5.1 -0.9 53 53 A D H 4