==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 31-JUL-06 2HVZ . COMPND 2 MOLECULE: SPLICING FACTOR, ARGININE/SERINE-RICH 7; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.M.TINTARU,G.M.HAUTBERGUE,A.P.GOLOVANOV,L.Y.LIAN,S.A.WILSON . 101 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 8395.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 55 54.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 17 16.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 19.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 52 0, 0.0 43,-0.8 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 149.4 2.1 -0.0 -1.2 2 2 A K E -A 43 0A 100 71,-0.5 70,-1.0 41,-0.2 71,-0.6 -0.904 360.0-173.3-113.0 138.4 5.9 -0.2 -1.7 3 3 A V E -AB 42 71A 1 39,-2.2 39,-2.1 -2,-0.4 2,-0.5 -0.970 12.7-156.4-131.6 146.1 8.0 2.4 -3.5 4 4 A Y E +AB 41 70A 78 66,-2.6 66,-1.7 -2,-0.3 2,-0.7 -0.908 14.8 173.9-126.2 104.4 11.7 2.5 -4.5 5 5 A V E +AB 40 69A 0 35,-1.5 35,-1.2 -2,-0.5 64,-0.2 -0.891 21.3 139.8-113.8 103.3 13.2 5.9 -5.1 6 6 A G E +AB 39 68A 1 62,-3.0 62,-2.2 -2,-0.7 33,-0.3 -0.298 22.3 92.9-120.3-154.9 17.0 5.8 -5.6 7 7 A N + 0 0 76 31,-2.2 2,-0.8 60,-0.2 32,-0.2 0.991 44.9 171.3 64.0 63.6 19.6 7.5 -7.8 8 8 A L + 0 0 37 30,-0.7 -1,-0.2 1,-0.1 31,-0.1 -0.729 32.7 110.9-107.7 82.6 20.6 10.3 -5.5 9 9 A G + 0 0 74 -2,-0.8 -1,-0.1 29,-0.1 4,-0.1 -0.232 65.8 53.1-148.6 52.9 23.6 11.9 -7.1 10 10 A T S S- 0 0 63 2,-0.1 3,-0.1 55,-0.0 56,-0.1 0.116 126.6 -64.1-175.9 36.7 22.7 15.4 -8.4 11 11 A G S S+ 0 0 79 1,-0.2 2,-0.5 -3,-0.1 -3,-0.1 0.734 103.7 116.3 79.4 22.8 21.2 17.4 -5.5 12 12 A A + 0 0 4 4,-0.1 -1,-0.2 3,-0.1 -2,-0.1 -0.909 31.8 112.4-129.4 105.0 18.2 15.0 -5.3 13 13 A G S > S- 0 0 23 -2,-0.5 4,-2.5 -5,-0.1 5,-0.3 -0.097 81.5 -24.4-134.4-126.3 17.7 13.0 -2.1 14 14 A K H > S+ 0 0 107 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.937 136.0 47.2 -63.9 -48.3 15.1 12.9 0.7 15 15 A G H > S+ 0 0 39 2,-0.2 4,-2.4 1,-0.2 5,-0.2 0.901 114.6 47.2 -60.7 -42.5 14.0 16.5 0.2 16 16 A E H > S+ 0 0 29 2,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.975 116.7 40.8 -63.5 -57.4 13.7 16.1 -3.6 17 17 A L H X S+ 0 0 2 -4,-2.5 4,-2.5 1,-0.2 5,-0.3 0.815 114.5 56.5 -61.2 -30.7 11.7 12.8 -3.4 18 18 A E H X S+ 0 0 61 -4,-2.3 4,-2.4 -5,-0.3 5,-0.2 0.944 108.9 43.3 -66.7 -49.6 9.8 14.3 -0.5 19 19 A R H X S+ 0 0 142 -4,-2.4 4,-2.6 2,-0.2 -2,-0.2 0.905 117.6 47.4 -63.1 -42.7 8.6 17.3 -2.4 20 20 A A H X S+ 0 0 0 -4,-2.4 4,-2.3 2,-0.2 5,-0.3 0.988 115.0 42.1 -62.3 -62.8 7.8 15.3 -5.5 21 21 A F H X S+ 0 0 0 -4,-2.5 4,-2.3 1,-0.2 -2,-0.2 0.907 118.6 47.4 -51.1 -46.9 5.9 12.5 -3.8 22 22 A S H < S+ 0 0 71 -4,-2.4 -1,-0.2 -5,-0.3 -2,-0.2 0.907 108.1 55.3 -62.7 -43.2 4.1 15.0 -1.6 23 23 A Y H < S+ 0 0 180 -4,-2.6 -1,-0.2 -5,-0.2 -2,-0.2 0.891 112.1 43.4 -57.3 -41.5 3.3 17.2 -4.6 24 24 A Y H < S- 0 0 113 -4,-2.3 -1,-0.2 1,-0.3 -2,-0.2 0.869 133.7 -49.2 -72.7 -38.0 1.6 14.3 -6.4 25 25 A G < - 0 0 10 -4,-2.3 2,-0.6 -5,-0.3 -1,-0.3 -0.906 65.4 -68.0 171.6 160.9 -0.2 13.2 -3.2 26 26 A P - 0 0 93 0, 0.0 19,-0.2 0, 0.0 -4,-0.1 -0.533 52.5-163.7 -69.8 113.2 0.1 12.4 0.5 27 27 A L - 0 0 34 -2,-0.6 17,-0.3 17,-0.1 3,-0.1 -0.141 26.8-113.5 -86.1-174.3 2.1 9.2 0.9 28 28 A R S S- 0 0 164 15,-2.5 2,-0.3 1,-0.3 16,-0.2 0.899 82.1 -31.0 -87.9 -48.9 2.4 6.9 4.0 29 29 A T E -C 43 0A 67 14,-2.1 14,-3.4 2,-0.0 2,-0.4 -0.966 51.5-136.2-169.0 154.3 6.0 7.4 4.9 30 30 A V E +C 42 0A 41 -2,-0.3 2,-0.3 12,-0.2 12,-0.2 -0.933 22.1 172.4-122.0 144.4 9.4 8.3 3.5 31 31 A W E -C 41 0A 172 10,-2.5 10,-1.7 -2,-0.4 2,-0.3 -0.988 17.3-144.4-148.0 154.3 12.8 6.7 4.2 32 32 A I E -C 40 0A 50 -2,-0.3 2,-0.7 8,-0.3 8,-0.3 -0.904 13.1-134.1-122.3 150.6 16.4 6.9 2.9 33 33 A A E +C 39 0A 11 6,-2.2 6,-0.8 -2,-0.3 -2,-0.0 -0.876 19.7 177.1-107.5 105.1 19.1 4.3 2.6 34 34 A R S S+ 0 0 238 -2,-0.7 -1,-0.2 1,-0.2 6,-0.1 0.764 74.4 73.6 -74.7 -26.0 22.5 5.5 3.8 35 35 A N S S+ 0 0 160 4,-0.1 -1,-0.2 2,-0.0 -2,-0.0 0.963 93.6 55.3 -50.4 -61.6 24.0 2.0 3.1 36 36 A P S S- 0 0 42 0, 0.0 3,-0.3 0, 0.0 0, 0.0 -0.137 96.0-108.8 -69.7 168.5 24.0 2.5 -0.7 37 37 A P S S- 0 0 140 0, 0.0 -2,-0.0 0, 0.0 -3,-0.0 0.772 104.8 -9.6 -69.8 -27.1 25.7 5.4 -2.6 38 38 A G S S+ 0 0 13 -29,-0.0 -31,-2.2 -31,-0.0 -30,-0.7 -0.253 92.0 126.1-174.1 75.8 22.3 6.8 -3.5 39 39 A F E +AC 6 33A 85 -6,-0.8 -6,-2.2 -33,-0.3 2,-0.3 -1.000 24.1 178.3-142.3 137.8 19.1 4.8 -2.8 40 40 A A E -AC 5 32A 0 -35,-1.2 -35,-1.5 -2,-0.3 2,-0.4 -0.953 15.0-144.0-137.5 156.4 15.9 5.6 -0.9 41 41 A F E -AC 4 31A 73 -10,-1.7 -10,-2.5 -2,-0.3 2,-0.3 -0.935 12.8-171.1-123.5 145.5 12.6 3.9 -0.2 42 42 A V E -AC 3 30A 3 -39,-2.1 -39,-2.2 -2,-0.4 2,-0.5 -0.984 13.0-145.2-136.5 146.6 9.1 5.3 0.1 43 43 A E E -AC 2 29A 74 -14,-3.4 -15,-2.5 -2,-0.3 -14,-2.1 -0.949 9.9-158.8-116.1 123.5 5.8 3.9 1.3 44 44 A F - 0 0 0 -43,-0.8 -17,-0.1 -2,-0.5 6,-0.1 -0.887 13.7-148.8-104.5 119.7 2.5 4.9 -0.4 45 45 A E S S+ 0 0 98 -2,-0.6 -1,-0.1 -19,-0.2 -18,-0.1 0.822 89.4 33.7 -51.9 -32.9 -0.7 4.4 1.6 46 46 A D S > S- 0 0 84 1,-0.1 4,-1.0 -3,-0.1 -18,-0.1 -0.937 73.0-137.7-127.9 149.9 -2.4 3.9 -1.7 47 47 A P H > S+ 0 0 55 0, 0.0 4,-3.0 0, 0.0 3,-0.4 0.900 101.4 61.9 -69.8 -42.9 -1.3 2.3 -5.0 48 48 A R H > S+ 0 0 188 1,-0.3 4,-2.5 2,-0.2 5,-0.3 0.912 103.8 49.5 -49.9 -48.7 -2.9 5.0 -7.2 49 49 A D H > S+ 0 0 33 1,-0.2 4,-2.2 2,-0.2 -1,-0.3 0.854 112.8 48.2 -60.4 -35.7 -0.7 7.7 -5.7 50 50 A A H X S+ 0 0 0 -4,-1.0 4,-3.1 -3,-0.4 5,-0.4 0.897 110.0 50.8 -72.0 -41.9 2.3 5.4 -6.3 51 51 A E H X S+ 0 0 62 -4,-3.0 4,-2.1 2,-0.2 5,-0.2 0.927 116.4 40.5 -61.8 -46.9 1.4 4.7 -9.9 52 52 A D H X S+ 0 0 96 -4,-2.5 4,-2.1 -5,-0.2 -2,-0.2 0.907 119.3 46.4 -68.7 -43.2 0.9 8.4 -10.7 53 53 A A H X S+ 0 0 0 -4,-2.2 4,-3.2 -5,-0.3 5,-0.4 0.975 117.0 41.4 -63.4 -57.5 4.0 9.4 -8.7 54 54 A V H X>S+ 0 0 3 -4,-3.1 4,-2.5 1,-0.2 5,-0.6 0.948 117.5 47.4 -55.6 -53.4 6.3 6.8 -10.0 55 55 A R H X5S+ 0 0 167 -4,-2.1 4,-1.2 -5,-0.4 -1,-0.2 0.872 118.3 43.9 -57.0 -38.8 5.1 7.2 -13.6 56 56 A G H X5S+ 0 0 16 -4,-2.1 4,-1.5 -5,-0.2 -2,-0.2 0.992 119.3 37.0 -70.8 -64.0 5.4 10.9 -13.2 57 57 A L H ><5S+ 0 0 7 -4,-3.2 3,-0.6 1,-0.2 -3,-0.2 0.948 126.6 39.3 -53.5 -54.5 8.8 11.3 -11.5 58 58 A D H 3<5S+ 0 0 82 -4,-2.5 -1,-0.2 -5,-0.4 -3,-0.2 0.866 115.7 53.0 -64.7 -37.1 10.3 8.4 -13.5 59 59 A G H 3<