==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 22-JAN-01 1HYW . COMPND 2 MOLECULE: HEAD-TO-TAIL JOINING PROTEIN W; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE LAMBDA; . AUTHOR K.L.MAXWELL,A.A.YEE,V.BOOTH,C.H.ARROWSMITH,M.GOLD, . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4217.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 70.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 44.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 173 0, 0.0 56,-0.7 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 -64.9 3.4 13.1 2.3 2 2 A T + 0 0 56 54,-0.2 4,-0.1 53,-0.1 52,-0.1 -0.664 360.0 122.5-137.1 79.9 4.3 9.4 2.3 3 3 A R >> + 0 0 147 -2,-0.2 3,-0.8 2,-0.1 4,-0.7 0.676 67.4 65.9-107.9 -28.7 1.8 7.3 4.3 4 4 A Q H 3> S+ 0 0 40 1,-0.2 4,-1.8 49,-0.2 50,-0.3 0.664 90.6 69.6 -68.9 -15.2 0.7 4.9 1.6 5 5 A E H 3> S+ 0 0 110 2,-0.2 4,-1.8 48,-0.2 -1,-0.2 0.868 88.3 62.3 -70.2 -37.7 4.2 3.5 1.6 6 6 A E H <> S+ 0 0 140 -3,-0.8 4,-1.2 1,-0.2 3,-0.4 0.958 114.1 32.2 -54.0 -54.7 3.9 1.9 5.0 7 7 A L H X S+ 0 0 0 -4,-0.7 4,-2.9 2,-0.3 -1,-0.2 0.821 109.6 67.3 -74.9 -28.8 1.1 -0.4 3.9 8 8 A A H X S+ 0 0 3 -4,-1.8 4,-1.2 2,-0.3 -1,-0.2 0.841 100.2 51.8 -56.5 -29.3 2.6 -0.6 0.5 9 9 A A H >X S+ 0 0 61 -4,-1.8 4,-1.4 -3,-0.4 3,-0.5 0.928 104.1 54.7 -69.3 -39.9 5.3 -2.4 2.4 10 10 A A H 3X S+ 0 0 11 -4,-1.2 4,-3.2 1,-0.3 3,-0.3 0.907 99.3 61.3 -56.8 -37.2 2.4 -4.5 3.7 11 11 A R H 3X S+ 0 0 71 -4,-2.9 4,-4.0 1,-0.3 5,-0.4 0.923 97.1 59.4 -52.2 -43.9 1.7 -5.0 -0.0 12 12 A A H X S+ 0 0 76 -4,-1.4 3,-3.7 -5,-0.4 4,-0.7 0.873 96.7 69.2 -72.4 -35.2 4.1 -12.7 -0.4 17 17 A L H 3< S+ 0 0 3 -4,-2.6 -2,-0.2 1,-0.3 -1,-0.2 0.879 86.5 68.4 -51.0 -36.8 0.8 -13.8 1.1 18 18 A M T 3< S- 0 0 121 -4,-1.6 -1,-0.3 -3,-0.2 -2,-0.2 0.717 135.6 -18.4 -53.3 -21.8 0.2 -15.3 -2.3 19 19 A T T <4 S+ 0 0 113 -3,-3.7 -2,-0.2 -5,-0.2 -3,-0.1 0.347 143.0 31.7-149.3 -66.4 3.0 -17.8 -1.3 20 20 A G S < S+ 0 0 48 -4,-0.7 -3,-0.2 -5,-0.2 -4,-0.1 0.997 113.6 47.5 -68.7 -71.4 5.3 -16.7 1.6 21 21 A K - 0 0 78 -8,-0.4 -7,-0.1 1,-0.1 3,-0.1 0.321 58.4-169.2 -53.2-163.7 3.0 -14.6 3.8 22 22 A R + 0 0 177 13,-0.1 15,-0.4 1,-0.1 2,-0.3 0.295 67.6 18.5-162.5 -37.0 -0.4 -15.7 4.9 23 23 A V - 0 0 63 13,-0.2 2,-0.4 14,-0.1 13,-0.3 -0.903 58.2-166.0-155.3 123.7 -2.1 -12.8 6.5 24 24 A A E +A 35 0A 0 11,-2.5 11,-4.1 -2,-0.3 2,-0.3 -0.902 9.2 174.1-112.9 137.3 -1.5 -9.1 6.4 25 25 A T E +A 34 0A 65 -2,-0.4 2,-0.3 9,-0.3 9,-0.3 -0.923 9.5 163.6-145.2 115.0 -2.9 -6.5 8.8 26 26 A V E -A 33 0A 36 7,-2.6 7,-1.2 -2,-0.3 2,-0.5 -0.853 29.5-130.6-130.7 166.6 -2.0 -2.8 8.8 27 27 A Q E +A 32 0A 156 -2,-0.3 2,-0.2 5,-0.2 5,-0.2 -0.972 28.9 172.5-121.6 126.1 -3.2 0.5 10.1 28 28 A K - 0 0 43 3,-1.1 2,-0.4 -2,-0.5 -24,-0.1 -0.580 45.4 -97.1-120.1-175.5 -3.5 3.6 8.0 29 29 A D S S+ 0 0 112 -2,-0.2 3,-0.1 1,-0.1 -25,-0.0 -0.369 114.1 4.7-101.5 52.3 -4.9 7.2 8.3 30 30 A G S S+ 0 0 77 1,-0.5 2,-0.3 -2,-0.4 -1,-0.1 -0.023 125.8 32.1 168.8 -48.8 -8.2 6.5 6.5 31 31 A R - 0 0 177 2,-0.0 -3,-1.1 0, 0.0 -1,-0.5 -0.796 65.4-127.4-128.8 170.5 -8.6 2.8 5.7 32 32 A R E -A 27 0A 163 -2,-0.3 2,-0.6 -5,-0.2 -5,-0.2 -0.966 8.7-157.0-122.0 136.3 -7.6 -0.6 7.1 33 33 A V E +A 26 0A 0 -7,-1.2 -7,-2.6 -2,-0.4 2,-0.5 -0.855 27.5 152.7-116.8 100.7 -5.8 -3.4 5.3 34 34 A E E +A 25 0A 99 -2,-0.6 2,-0.3 -9,-0.3 -9,-0.3 -0.965 20.0 149.9-126.7 109.1 -6.4 -6.8 7.0 35 35 A F E -A 24 0A 53 -11,-4.1 -11,-2.5 -2,-0.5 2,-0.1 -0.951 25.5-166.6-141.3 161.5 -6.2 -9.8 4.6 36 36 A T > - 0 0 50 -2,-0.3 4,-0.9 -13,-0.3 -13,-0.2 -0.355 54.6 -66.5-125.4-154.9 -5.3 -13.4 4.3 37 37 A A T 4 S+ 0 0 39 -15,-0.4 -14,-0.1 1,-0.2 -2,-0.0 -0.132 120.6 61.7 -96.5 39.8 -4.6 -15.9 1.5 38 38 A T T 4 S+ 0 0 109 -2,-0.1 4,-0.2 3,-0.0 -1,-0.2 0.617 117.4 17.8-126.3 -43.0 -8.2 -15.8 0.2 39 39 A S T > S+ 0 0 49 2,-0.1 4,-3.3 -3,-0.1 3,-0.4 0.462 90.9 105.4-109.8 -7.8 -8.8 -12.2 -0.8 40 40 A V H X S+ 0 0 2 -4,-0.9 4,-3.7 1,-0.2 7,-0.2 0.757 79.6 58.7 -47.1 -26.5 -5.2 -11.1 -1.0 41 41 A S H > S+ 0 0 81 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.984 110.8 37.9 -67.5 -53.7 -5.6 -11.3 -4.8 42 42 A D H > S+ 0 0 125 -3,-0.4 4,-1.6 1,-0.2 -2,-0.2 0.870 120.4 50.7 -62.0 -35.0 -8.5 -8.8 -4.8 43 43 A L H X>S+ 0 0 1 -4,-3.3 4,-4.3 2,-0.2 5,-0.5 0.932 98.4 62.9 -68.2 -46.1 -6.5 -7.0 -2.1 44 44 A K H X5S+ 0 0 38 -4,-3.7 4,-2.4 -5,-0.3 -1,-0.2 0.852 104.3 51.0 -51.3 -32.1 -3.3 -7.0 -4.1 45 45 A K H X5S+ 0 0 147 -4,-1.4 4,-2.5 2,-0.2 -1,-0.3 0.974 114.0 42.2 -66.6 -51.6 -5.2 -4.9 -6.6 46 46 A Y H X5S+ 0 0 60 -4,-1.6 4,-2.4 1,-0.2 -2,-0.2 0.950 120.3 42.6 -58.4 -50.9 -6.3 -2.5 -3.8 47 47 A I H X5S+ 0 0 0 -4,-4.3 4,-4.1 1,-0.2 -1,-0.2 0.845 109.8 59.3 -64.9 -32.7 -2.9 -2.6 -2.3 48 48 A A H XX S+ 0 0 11 -4,-2.4 3,-1.3 2,-0.2 4,-1.1 0.940 107.6 54.1 -51.7 -54.8 -1.9 1.8 -2.8 51 51 A E H >< S+ 0 0 54 -4,-4.1 3,-3.1 1,-0.3 -2,-0.2 0.955 106.1 50.0 -44.4 -62.7 1.6 0.9 -4.0 52 52 A V H 3< S+ 0 0 118 -4,-2.5 -1,-0.3 1,-0.3 -2,-0.2 0.730 107.8 57.6 -52.6 -21.1 1.3 3.2 -7.0 53 53 A Q H X< S+ 0 0 64 -3,-1.3 3,-0.8 -4,-1.1 -1,-0.3 0.710 83.3 113.6 -82.9 -22.0 0.3 5.8 -4.4 54 54 A T T << S+ 0 0 41 -3,-3.1 4,-0.2 -4,-1.1 -52,-0.1 0.040 79.4 16.6 -45.9 158.5 3.5 5.4 -2.4 55 55 A G T > S+ 0 0 19 1,-0.2 3,-2.5 2,-0.1 -1,-0.2 0.807 74.3 168.2 41.8 37.0 5.9 8.3 -2.3 56 56 A M T < S+ 0 0 106 -3,-0.8 -1,-0.2 1,-0.3 -54,-0.2 0.763 79.5 43.3 -49.5 -25.7 3.1 10.5 -3.5 57 57 A T T 3 0 0 99 -56,-0.7 -1,-0.3 0, 0.0 -2,-0.1 -0.195 360.0 360.0-114.1 39.3 5.4 13.4 -2.6 58 58 A Q < 0 0 212 -3,-2.5 -2,-0.1 -4,-0.2 -56,-0.1 -0.345 360.0 360.0 117.2 360.0 8.6 11.9 -4.1