==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 15-AUG-06 2I1T . COMPND 2 MOLECULE: JINGZHAOTOXIN-3; . SOURCE 2 ORGANISM_SCIENTIFIC: CHILOBRACHYS JINGZHAO; . AUTHOR Z.LIAO,K.PENG,S.LIANG . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3032.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 191 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 63.6 13.5 10.5 -1.0 2 2 A G - 0 0 77 1,-0.1 2,-0.1 16,-0.0 0, 0.0 -0.409 360.0-113.3 -66.9 140.0 11.3 7.6 0.2 3 3 A E - 0 0 130 -2,-0.1 2,-0.3 16,-0.1 -1,-0.1 -0.370 32.5-158.5 -72.4 153.7 9.9 5.5 -2.6 4 4 A a - 0 0 70 1,-0.1 14,-0.3 15,-0.1 15,-0.1 -0.957 9.1-152.7-134.2 153.2 6.1 5.5 -3.2 5 5 A G - 0 0 15 -2,-0.3 2,-0.2 1,-0.2 -1,-0.1 0.548 32.2-103.8 -92.1-118.3 3.7 3.1 -4.9 6 6 A G - 0 0 19 25,-0.2 13,-0.4 13,-0.1 -1,-0.2 -0.517 46.1 -65.2-147.6-143.1 0.3 4.3 -6.4 7 7 A F S S+ 0 0 129 1,-0.2 26,-0.4 -2,-0.2 2,-0.1 0.849 124.8 10.4 -90.7 -37.8 -3.4 4.2 -5.5 8 8 A W S S+ 0 0 144 24,-0.1 24,-0.2 14,-0.0 -1,-0.2 -0.511 84.1 151.9-140.8 70.5 -3.9 0.4 -5.7 9 9 A W E -A 31 0A 149 22,-1.6 22,-3.3 -3,-0.2 2,-0.4 -0.543 47.7-102.8 -96.9 166.2 -0.6 -1.4 -6.0 10 10 A K E +A 30 0A 184 20,-0.3 20,-0.3 -2,-0.2 2,-0.3 -0.741 49.2 156.5 -92.1 134.7 0.2 -5.0 -4.8 11 11 A b - 0 0 14 18,-0.7 14,-0.2 -2,-0.4 18,-0.1 -0.989 33.5-138.1-151.1 159.0 2.2 -5.5 -1.6 12 12 A G S S- 0 0 32 -2,-0.3 17,-0.2 12,-0.1 -1,-0.2 0.617 82.4 -27.6 -86.8-115.9 2.7 -8.1 1.1 13 13 A R S S- 0 0 187 13,-0.1 13,-0.1 1,-0.1 11,-0.1 0.028 120.9 -56.8 -90.7 29.6 2.8 -7.0 4.8 14 14 A G S S+ 0 0 45 11,-0.1 -1,-0.1 9,-0.1 4,-0.0 0.797 91.7 142.9 100.9 38.7 4.1 -3.5 3.8 15 15 A K + 0 0 158 2,-0.1 -4,-0.1 1,-0.0 9,-0.0 0.982 58.7 59.4 -74.2 -57.3 7.3 -4.5 1.8 16 16 A P S S- 0 0 53 0, 0.0 2,-0.9 0, 0.0 -11,-0.1 -0.537 95.8-114.1 -74.6 135.0 7.1 -1.9 -0.9 17 17 A P - 0 0 69 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 -0.564 36.1-157.4 -71.8 105.8 7.2 1.7 0.3 18 18 A c - 0 0 32 -2,-0.9 3,-0.1 -14,-0.3 2,-0.1 -0.163 28.3 -84.9 -74.8 176.6 3.8 3.2 -0.5 19 19 A a > - 0 0 19 -13,-0.4 3,-2.5 1,-0.1 -1,-0.1 -0.402 59.9 -74.4 -81.2 161.9 3.2 7.0 -0.9 20 20 A K T 3 S+ 0 0 208 1,-0.3 -1,-0.1 -2,-0.1 3,-0.1 -0.324 124.8 21.6 -56.2 125.7 2.5 9.2 2.1 21 21 A G T 3 S+ 0 0 56 1,-0.3 13,-1.5 -3,-0.1 2,-0.3 0.175 101.8 107.8 100.6 -18.7 -1.2 8.6 3.2 22 22 A Y E < -B 33 0A 82 -3,-2.5 2,-0.4 11,-0.2 -1,-0.3 -0.725 51.5-161.7 -94.6 142.5 -1.3 5.1 1.5 23 23 A A E -B 32 0A 36 9,-3.2 9,-2.2 -2,-0.3 2,-0.2 -0.961 10.9-134.7-124.8 140.8 -1.3 1.9 3.6 24 24 A b E -B 31 0A 33 -2,-0.4 2,-0.4 7,-0.3 7,-0.3 -0.521 14.9-153.4 -89.4 159.6 -0.5 -1.7 2.5 25 25 A S E >> -B 30 0A 27 5,-2.1 4,-2.4 -14,-0.2 5,-0.7 -0.965 16.7-168.8-138.1 123.3 -2.6 -4.7 3.4 26 26 A K T 45S+ 0 0 129 -2,-0.4 -1,-0.1 2,-0.2 -13,-0.1 0.872 95.7 49.5 -76.6 -35.1 -1.4 -8.4 3.7 27 27 A T T 45S+ 0 0 125 1,-0.2 -1,-0.2 3,-0.1 -14,-0.1 0.904 120.4 36.5 -70.0 -38.7 -5.0 -9.7 3.9 28 28 A W T 45S- 0 0 125 2,-0.2 -2,-0.2 -16,-0.1 -1,-0.2 0.893 101.8-135.6 -80.0 -40.9 -6.0 -7.7 0.9 29 29 A G T <5S+ 0 0 31 -4,-2.4 -18,-0.7 1,-0.3 2,-0.3 0.642 71.2 71.4 94.5 16.4 -2.7 -8.2 -1.0 30 30 A W E