==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 06-FEB-01 1I26 . COMPND 2 MOLECULE: PTU-1; . SOURCE 2 ORGANISM_SCIENTIFIC: PEIRATES TURPIS; . AUTHOR C.BERNARD,G.CORZO,A.MOSBAH,T.NAKAJIMA,H.DARBON . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2876.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 44.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 160 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 34.7 3.4 -15.1 1.2 2 2 A E - 0 0 113 1,-0.1 4,-0.1 2,-0.1 0, 0.0 -0.312 360.0-103.6 -69.6 153.9 2.2 -11.8 -0.1 3 3 A K - 0 0 166 2,-0.1 4,-0.1 1,-0.1 -1,-0.1 -0.004 39.1 -92.2 -67.6 179.4 3.7 -10.4 -3.4 4 4 A D S S+ 0 0 136 2,-0.1 -1,-0.1 16,-0.0 -2,-0.1 0.940 108.8 65.9 -60.4 -49.4 6.2 -7.6 -3.5 5 5 A a S S- 0 0 27 1,-0.1 2,-0.4 15,-0.1 14,-0.2 -0.254 99.9 -94.9 -71.5 161.9 3.6 -4.9 -3.8 6 6 A I B -a 19 0A 13 12,-1.0 14,-1.6 15,-0.1 15,-0.2 -0.663 38.9-128.2 -82.9 128.6 1.1 -4.1 -1.0 7 7 A A > - 0 0 32 -2,-0.4 3,-1.9 12,-0.2 26,-0.4 -0.235 41.7 -74.1 -70.1 162.6 -2.3 -5.9 -1.3 8 8 A P T 3 S+ 0 0 118 0, 0.0 -1,-0.2 0, 0.0 26,-0.1 -0.343 119.6 4.7 -60.4 131.2 -5.6 -4.0 -1.1 9 9 A G T 3 S+ 0 0 58 24,-0.6 -2,-0.1 1,-0.3 25,-0.1 0.687 102.1 137.7 67.3 17.3 -6.4 -2.8 2.5 10 10 A A S < S- 0 0 13 -3,-1.9 23,-2.1 23,-0.1 2,-1.5 -0.736 70.3 -96.1 -97.9 145.1 -3.0 -4.2 3.5 11 11 A P + 0 0 92 0, 0.0 21,-0.2 0, 0.0 20,-0.1 -0.368 49.9 167.3 -60.3 88.7 -0.6 -2.3 6.0 12 12 A b > > + 0 0 0 -2,-1.5 3,-1.6 15,-0.1 5,-0.5 0.851 47.6 98.3 -72.5 -35.4 1.6 -0.7 3.4 13 13 A F T 3 5S+ 0 0 110 1,-0.2 20,-0.0 14,-0.2 0, 0.0 -0.381 72.9 51.8 -58.2 109.1 3.1 1.6 6.0 14 14 A G T 3 5S+ 0 0 73 -2,-0.5 -1,-0.2 3,-0.0 -2,-0.1 0.173 101.4 53.3 148.7 -19.1 6.4 -0.1 6.9 15 15 A T T < 5S- 0 0 65 -3,-1.6 -2,-0.1 2,-0.2 -3,-0.0 0.120 95.5-124.1-126.7 18.0 8.1 -0.7 3.6 16 16 A D T 5S+ 0 0 159 1,-0.2 -3,-0.1 -4,-0.2 -4,-0.0 0.742 76.0 121.9 43.6 26.0 8.0 2.9 2.2 17 17 A K < - 0 0 66 -5,-0.5 -2,-0.2 1,-0.0 -1,-0.2 -0.950 57.0-134.5-121.1 138.7 6.3 1.2 -0.8 18 18 A P - 0 0 62 0, 0.0 -12,-1.0 0, 0.0 7,-0.2 -0.039 40.4 -69.7 -77.3-175.4 2.8 2.0 -2.3 19 19 A c B -a 6 0A 17 5,-1.0 5,-0.2 15,-0.3 -12,-0.2 -0.132 49.7 -99.1 -70.4 171.5 0.1 -0.4 -3.3 20 20 A a S S+ 0 0 83 -14,-1.6 -1,-0.1 -15,-0.1 -13,-0.1 0.766 100.0 95.0 -63.3 -25.5 0.3 -2.6 -6.3 21 21 A N S > S- 0 0 77 -15,-0.2 3,-1.5 1,-0.1 -2,-0.1 -0.456 81.4-131.8 -70.0 137.5 -1.8 -0.1 -8.2 22 22 A P T 3 S+ 0 0 134 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.437 109.5 36.9 -70.1 3.2 0.2 2.5 -10.3 23 23 A R T 3 S+ 0 0 200 2,-0.1 2,-0.6 11,-0.0 -3,-0.1 0.207 90.1 108.7-136.8 11.5 -1.9 5.2 -8.7 24 24 A A < - 0 0 10 -3,-1.5 -5,-1.0 -5,-0.2 2,-0.2 -0.844 50.1-163.1 -98.5 117.4 -2.3 3.9 -5.2 25 25 A W - 0 0 184 -2,-0.6 9,-2.9 9,-0.2 2,-0.1 -0.549 30.0 -89.2 -95.0 162.3 -0.4 5.8 -2.5 26 26 A b E -B 33 0B 47 7,-0.2 2,-0.5 -2,-0.2 7,-0.2 -0.396 29.4-150.0 -70.1 145.3 0.4 4.7 1.0 27 27 A S E > > +B 32 0B 32 5,-2.4 3,-1.4 1,-0.1 5,-0.8 -0.679 27.4 162.8-119.4 77.0 -2.2 5.5 3.7 28 28 A S T 3 5 + 0 0 55 -2,-0.5 3,-0.5 1,-0.3 -1,-0.1 0.714 65.4 84.2 -65.6 -18.2 -0.2 5.9 7.0 29 29 A Y T 3 5S+ 0 0 235 1,-0.3 -1,-0.3 -3,-0.1 -2,-0.0 0.882 119.7 4.5 -48.9 -41.7 -3.3 7.6 8.3 30 30 A A T < 5S- 0 0 53 -3,-1.4 -1,-0.3 2,-0.2 -2,-0.2 -0.006 112.1-104.3-133.6 25.6 -4.6 4.2 9.1 31 31 A N T 5S+ 0 0 68 -3,-0.5 2,-0.3 1,-0.2 -3,-0.2 0.951 81.6 102.7 45.8 82.6 -1.5 2.1 8.1 32 32 A K E