==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOKINE 16-MAR-01 1I8X . COMPND 2 MOLECULE: GRANULIN-1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR W.F.VRANKEN,S.JAMES,H.P.J.BENNETT,F.NI . 30 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2425.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 107 0, 0.0 2,-0.6 0, 0.0 8,-0.0 0.000 360.0 360.0 360.0-170.4 -9.2 4.5 -0.9 2 2 A I + 0 0 33 8,-1.8 8,-0.5 1,-0.1 3,-0.1 -0.940 360.0 152.4-117.3 113.5 -5.9 3.7 0.9 3 3 A H >> + 0 0 90 -2,-0.6 2,-1.4 6,-0.2 5,-0.8 0.806 10.4 159.3-102.6 -45.4 -3.5 6.6 1.5 4 4 A a T 45S+ 0 0 88 1,-0.3 -1,-0.1 2,-0.2 5,-0.1 -0.369 83.6 27.8 58.8 -90.1 -1.7 5.5 4.7 5 5 A D T 45S- 0 0 101 -2,-1.4 -1,-0.3 3,-0.2 4,-0.1 0.393 107.6-124.6 -79.8 4.1 1.4 7.7 4.3 6 6 A A T 45S+ 0 0 80 -3,-0.4 -2,-0.2 2,-0.3 3,-0.1 0.782 97.1 86.0 56.8 27.5 -0.8 10.2 2.4 7 7 A A T <5S+ 0 0 77 -4,-0.8 2,-0.4 1,-0.3 -1,-0.1 0.452 86.0 42.0-129.5 -14.1 1.8 9.9 -0.4 8 8 A T < - 0 0 58 -5,-0.8 -1,-0.3 17,-0.0 -2,-0.3 -0.969 69.9-146.2-143.2 124.0 0.5 6.8 -2.3 9 9 A I - 0 0 110 -2,-0.4 -6,-0.2 -3,-0.1 17,-0.1 -0.519 16.9-170.1 -86.6 155.0 -3.1 5.9 -3.2 10 10 A b - 0 0 11 -8,-0.5 -8,-1.8 -2,-0.2 3,-0.1 -0.986 30.2 -90.0-144.7 153.1 -4.4 2.3 -3.3 11 11 A P > - 0 0 79 0, 0.0 3,-1.8 0, 0.0 2,-0.7 -0.330 54.5 -93.9 -63.6 141.4 -7.5 0.4 -4.5 12 12 A D T 3 S+ 0 0 132 1,-0.3 3,-0.1 -11,-0.0 0, 0.0 -0.399 116.3 39.3 -59.5 104.1 -10.3 0.0 -1.9 13 13 A G T 3 S+ 0 0 44 -2,-0.7 16,-1.2 1,-0.5 2,-0.3 0.351 93.6 99.1 134.1 0.5 -9.5 -3.4 -0.5 14 14 A T E < -A 28 0A 17 -3,-1.8 -1,-0.5 14,-0.2 2,-0.3 -0.843 60.1-133.9-117.0 154.0 -5.7 -3.4 -0.3 15 15 A T E -A 27 0A 61 12,-2.3 12,-2.3 -2,-0.3 2,-0.7 -0.721 27.0-104.4-105.3 156.1 -3.3 -2.8 2.6 16 16 A a E +A 26 0A 35 -2,-0.3 2,-0.4 10,-0.2 10,-0.2 -0.692 45.2 174.6 -82.2 113.1 -0.2 -0.6 2.7 17 17 A S E -A 25 0A 28 8,-2.5 8,-2.5 -2,-0.7 2,-0.4 -0.977 23.8-136.8-124.6 132.7 2.9 -2.8 2.6 18 18 A L E -A 24 0A 89 -2,-0.4 6,-0.2 6,-0.2 -2,-0.0 -0.695 19.4-132.9 -89.0 136.5 6.5 -1.6 2.3 19 19 A S > - 0 0 16 4,-1.5 3,-2.4 -2,-0.4 4,-0.3 -0.423 29.0-103.6 -83.2 160.4 8.9 -3.4 -0.0 20 20 A P T 3 S+ 0 0 117 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.629 125.5 51.1 -58.1 -12.0 12.4 -4.6 1.0 21 21 A Y T 3 S- 0 0 194 2,-0.1 -2,-0.0 0, 0.0 -3,-0.0 0.031 129.2 -95.0-113.6 24.0 13.6 -1.6 -1.0 22 22 A G S < S+ 0 0 55 -3,-2.4 2,-0.5 1,-0.2 -4,-0.1 0.953 75.0 148.4 62.8 52.6 11.4 0.9 0.7 23 23 A V - 0 0 74 -4,-0.3 -4,-1.5 2,-0.0 2,-0.4 -0.959 43.1-137.9-124.0 114.8 8.6 0.8 -1.9 24 24 A W E +A 18 0A 101 -2,-0.5 2,-0.3 -6,-0.2 -6,-0.2 -0.566 35.0 165.5 -72.8 121.1 5.0 1.4 -0.9 25 25 A Y E -A 17 0A 107 -8,-2.5 -8,-2.5 -2,-0.4 2,-0.5 -0.963 37.6-112.7-137.6 153.7 2.7 -1.1 -2.6 26 26 A b E -A 16 0A 46 -2,-0.3 -10,-0.2 -10,-0.2 -17,-0.0 -0.751 27.8-165.6 -90.0 125.6 -0.9 -2.3 -2.2 27 27 A S E -A 15 0A 46 -12,-2.3 -12,-2.3 -2,-0.5 2,-0.1 -0.946 18.2-129.1-115.0 119.0 -1.4 -5.9 -1.1 28 28 A P E +A 14 0A 105 0, 0.0 2,-0.3 0, 0.0 -14,-0.2 -0.371 32.1 179.4 -66.1 139.7 -4.8 -7.5 -1.4 29 29 A F 0 0 134 -16,-1.2 0, 0.0 1,-0.1 0, 0.0 -0.887 360.0 360.0-137.1 167.5 -6.2 -9.3 1.7 30 30 A S 0 0 190 -2,-0.3 -1,-0.1 0, 0.0 -17,-0.0 0.349 360.0 360.0-160.0 360.0 -9.3 -11.2 2.8