==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 06-SEP-06 2I9N . COMPND 2 MOLECULE: MHB4A PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.PANTOJA-UCEDA,A.PINEDA-LUCENA . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3459.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 24.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 248 0, 0.0 14,-0.1 0, 0.0 15,-0.1 0.000 360.0 360.0 360.0 93.7 -6.2 8.0 -5.0 2 2 A G - 0 0 44 13,-0.1 9,-0.1 2,-0.0 10,-0.0 0.598 360.0 -88.3 90.9 118.4 -2.6 8.5 -6.0 3 3 A K - 0 0 132 1,-0.1 2,-0.2 7,-0.1 9,-0.1 -0.188 46.1-150.0 -54.1 145.3 0.4 8.4 -3.6 4 4 A W - 0 0 90 7,-0.3 7,-1.0 5,-0.1 2,-0.4 -0.409 9.4-120.7-108.0-174.2 1.1 11.8 -2.0 5 5 A T B +A 10 0A 105 5,-0.2 5,-0.2 -2,-0.2 -2,-0.0 -0.912 36.9 154.9-138.3 107.8 4.3 13.3 -0.8 6 6 A Y S S- 0 0 156 3,-1.1 -1,-0.1 -2,-0.4 4,-0.1 0.909 86.5 -3.6 -93.0 -62.8 4.7 14.4 2.8 7 7 A N S S- 0 0 130 2,-0.3 3,-0.1 0, 0.0 -1,-0.1 -0.415 121.4 -66.9-131.1 55.4 8.5 14.3 3.5 8 8 A G S S+ 0 0 81 1,-0.2 2,-0.5 0, 0.0 -3,-0.1 0.736 107.3 119.7 67.3 23.5 9.9 13.0 0.3 9 9 A I - 0 0 79 0, 0.0 -3,-1.1 0, 0.0 2,-0.7 -0.984 63.4-134.8-125.7 122.1 8.2 9.7 1.0 10 10 A T B -A 5 0A 68 -2,-0.5 -5,-0.2 -5,-0.2 2,-0.2 -0.655 25.8-155.1 -78.2 112.2 5.5 8.2 -1.3 11 11 A Y - 0 0 93 -7,-1.0 2,-0.3 -2,-0.7 -7,-0.3 -0.512 5.1-153.3 -87.2 156.2 2.6 7.0 0.9 12 12 A E + 0 0 177 -2,-0.2 3,-0.1 -9,-0.1 -1,-0.0 -0.819 52.1 84.4-125.9 165.6 0.2 4.3 -0.1 13 13 A G S S- 0 0 65 -2,-0.3 2,-0.7 1,-0.1 -1,-0.1 0.817 98.1 -78.5 105.7 62.9 -3.4 3.4 0.7 14 14 A G S S- 0 0 48 2,-0.1 2,-0.3 -3,-0.0 -1,-0.1 -0.352 97.0 -26.7 55.8-101.3 -5.7 5.4 -1.6 15 15 A G - 0 0 49 -2,-0.7 2,-0.6 -14,-0.1 -12,-0.1 -0.906 59.3-110.1-140.7 167.0 -5.6 8.8 0.1 16 16 A G - 0 0 57 -2,-0.3 2,-0.2 -15,-0.1 -2,-0.1 -0.902 32.4-163.2-106.3 115.5 -5.1 10.3 3.6 17 17 A S - 0 0 85 -2,-0.6 0, 0.0 1,-0.1 0, 0.0 -0.492 18.2-147.4 -92.0 164.0 -8.2 11.8 5.2 18 18 A A S > S+ 0 0 88 -2,-0.2 3,-1.4 2,-0.1 4,-0.2 0.792 99.6 51.7 -97.2 -39.1 -8.2 14.2 8.1 19 19 A A T >> S+ 0 0 77 1,-0.3 3,-1.5 2,-0.2 4,-0.6 0.823 96.6 70.0 -66.7 -32.2 -11.5 13.0 9.7 20 20 A E H 3> S+ 0 0 79 1,-0.3 4,-2.9 2,-0.2 5,-0.4 0.663 71.5 96.1 -59.0 -15.5 -10.1 9.5 9.6 21 21 A A H <> S+ 0 0 63 -3,-1.4 4,-1.1 1,-0.3 -1,-0.3 0.882 90.0 39.4 -39.9 -51.0 -7.8 10.8 12.3 22 22 A Y H <> S+ 0 0 151 -3,-1.5 4,-2.9 -4,-0.2 -1,-0.3 0.846 113.4 57.1 -69.3 -35.7 -10.2 9.4 14.8 23 23 A A H X S+ 0 0 35 -4,-0.6 4,-2.3 2,-0.2 -2,-0.2 0.980 100.6 54.3 -58.3 -61.2 -10.7 6.3 12.6 24 24 A K H < S+ 0 0 146 -4,-2.9 4,-0.2 1,-0.3 -1,-0.2 0.847 113.0 46.8 -40.2 -42.5 -7.1 5.4 12.5 25 25 A R H >X S+ 0 0 200 -4,-1.1 3,-2.6 -5,-0.4 4,-0.6 0.957 106.5 54.0 -66.2 -53.2 -7.3 5.5 16.3 26 26 A I H 3X S+ 0 0 80 -4,-2.9 4,-3.1 1,-0.3 5,-0.2 0.756 84.5 90.9 -52.7 -24.4 -10.5 3.4 16.5 27 27 A A H 3X S+ 0 0 42 -4,-2.3 4,-1.0 1,-0.2 -1,-0.3 0.812 91.4 43.9 -40.4 -35.9 -8.5 1.0 14.4 28 28 A E H X4 S+ 0 0 162 -3,-2.6 3,-0.9 -4,-0.2 -1,-0.2 0.972 107.1 54.6 -74.8 -59.6 -7.6 -0.4 17.8 29 29 A A H 3< S+ 0 0 77 -4,-0.6 -2,-0.2 1,-0.3 -1,-0.2 0.863 103.4 61.4 -40.5 -45.6 -11.0 -0.3 19.5 30 30 A M H 3< S+ 0 0 153 -4,-3.1 -1,-0.3 2,-0.0 -2,-0.2 0.925 92.6 74.9 -47.7 -55.3 -12.1 -2.4 16.5 31 31 A A << + 0 0 72 -4,-1.0 2,-0.3 -3,-0.9 -3,-0.0 -0.247 64.2 161.3 -60.4 148.9 -9.8 -5.2 17.4 32 32 A K 0 0 205 0, 0.0 -2,-0.0 0, 0.0 -3,-0.0 -0.973 360.0 360.0-165.1 160.2 -10.8 -7.3 20.4 33 33 A G 0 0 122 -2,-0.3 0, 0.0 0, 0.0 0, 0.0 -0.278 360.0 360.0-118.4 360.0 -10.1 -10.7 22.0