==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 06-SEP-06 2I9O . COMPND 2 MOLECULE: MHB8A PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.PANTOJA-UCEDA,A.PINEDA-LUCENA . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3702.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 40.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 297 0, 0.0 2,-0.2 0, 0.0 14,-0.1 0.000 360.0 360.0 360.0 -56.8 -2.7 5.7 -10.2 2 2 A G - 0 0 32 12,-0.1 10,-0.1 2,-0.0 13,-0.0 -0.619 360.0 -20.5 130.6 170.8 -3.6 3.8 -13.4 3 3 A K - 0 0 127 -2,-0.2 2,-0.4 8,-0.1 9,-0.1 -0.007 57.8-156.4 -43.0 149.9 -3.6 0.4 -14.9 4 4 A W - 0 0 150 0, 0.0 -1,-0.1 0, 0.0 8,-0.1 -0.965 9.5-133.6-140.5 118.9 -1.4 -2.1 -13.1 5 5 A T + 0 0 79 -2,-0.4 5,-0.2 1,-0.1 4,-0.1 -0.331 24.2 174.0 -69.4 152.0 -0.0 -5.2 -14.7 6 6 A Y S S- 0 0 172 3,-1.3 -1,-0.1 -2,-0.0 4,-0.1 0.665 76.0 -2.4-121.4 -62.9 -0.2 -8.5 -12.8 7 7 A N S S- 0 0 138 2,-0.5 2,-1.3 0, 0.0 3,-0.1 -0.444 118.3 -67.9-135.0 58.9 1.0 -11.4 -14.9 8 8 A G S S+ 0 0 61 1,-0.2 -3,-0.0 0, 0.0 0, 0.0 -0.468 111.1 99.7 91.8 -61.9 1.8 -9.9 -18.3 9 9 A I - 0 0 107 -2,-1.3 -3,-1.3 -4,-0.1 -2,-0.5 -0.283 67.9-138.2 -59.0 141.7 -1.8 -9.0 -19.2 10 10 A T - 0 0 82 -5,-0.2 2,-0.3 -4,-0.1 -5,-0.1 -0.620 8.7-131.5-102.0 162.7 -2.7 -5.4 -18.5 11 11 A Y - 0 0 90 -2,-0.2 2,-0.2 3,-0.0 -8,-0.1 -0.716 17.1-175.4-111.8 163.0 -5.8 -3.9 -17.0 12 12 A E + 0 0 175 -2,-0.3 3,-0.1 -9,-0.1 -2,-0.0 -0.795 60.5 34.7-162.5 113.7 -8.1 -1.1 -18.1 13 13 A G + 0 0 61 1,-0.4 -2,-0.0 -2,-0.2 -10,-0.0 -0.477 68.7 114.1 145.1 -67.6 -11.1 0.4 -16.3 14 14 A G S S+ 0 0 84 1,-0.1 -1,-0.4 2,-0.0 -12,-0.1 -0.109 75.1 43.2 -40.5 114.6 -10.5 0.3 -12.5 15 15 A G - 0 0 53 -3,-0.1 -2,-0.1 -14,-0.1 -1,-0.1 0.781 61.5-173.8 105.9 78.0 -10.3 3.9 -11.6 16 16 A G - 0 0 76 0, 0.0 -2,-0.0 0, 0.0 -3,-0.0 0.997 15.5-166.0 -60.8 -70.7 -13.0 6.1 -13.2 17 17 A G + 0 0 70 3,-0.1 3,-0.1 0, 0.0 4,-0.1 0.881 30.1 138.4 77.7 99.1 -11.9 9.5 -12.0 18 18 A G + 0 0 80 2,-0.3 3,-0.1 1,-0.1 2,-0.0 0.542 64.8 6.5-131.5 -64.7 -14.4 12.3 -12.5 19 19 A G S S- 0 0 68 1,-0.3 -1,-0.1 0, 0.0 0, 0.0 0.138 109.0 -17.8-102.1-142.7 -14.7 14.7 -9.6 20 20 A G - 0 0 75 1,-0.1 -1,-0.3 -3,-0.1 3,-0.3 -0.120 60.5-117.4 -61.3 162.0 -12.7 15.1 -6.4 21 21 A S S S+ 0 0 85 1,-0.2 -1,-0.1 2,-0.1 0, 0.0 -0.188 76.4 121.3 -95.0 39.6 -10.4 12.3 -5.2 22 22 A A S >> S+ 0 0 78 1,-0.2 3,-1.2 2,-0.2 4,-0.9 0.997 80.7 34.6 -63.6 -67.8 -12.5 11.9 -2.0 23 23 A A H 3> S+ 0 0 68 1,-0.3 4,-1.1 -3,-0.3 -1,-0.2 0.738 113.1 66.2 -59.2 -22.3 -13.5 8.3 -2.4 24 24 A E H 34 S+ 0 0 89 1,-0.2 -1,-0.3 -4,-0.2 -2,-0.2 -0.089 98.3 54.3 -90.9 33.9 -10.1 7.9 -4.0 25 25 A A H <4 S+ 0 0 47 -3,-1.2 -2,-0.2 3,-0.0 -1,-0.2 0.575 122.1 17.0-129.5 -45.1 -8.5 8.7 -0.6 26 26 A Y H >X S+ 0 0 154 -4,-0.9 4,-2.6 2,-0.1 3,-0.6 0.798 128.8 47.9-100.0 -41.4 -9.9 6.3 1.9 27 27 A A H 3X S+ 0 0 46 -4,-1.1 4,-0.6 -5,-0.3 -3,-0.2 0.514 106.7 63.1 -77.2 -5.2 -11.4 3.7 -0.5 28 28 A K H 34 S+ 0 0 84 2,-0.1 4,-0.5 -5,-0.1 -1,-0.2 0.730 111.8 33.5 -88.4 -26.9 -8.0 3.8 -2.2 29 29 A R H X> S+ 0 0 141 -3,-0.6 4,-2.0 2,-0.2 3,-0.6 0.831 103.3 72.2 -94.1 -42.3 -6.2 2.5 0.8 30 30 A I H 3X S+ 0 0 79 -4,-2.6 4,-3.2 1,-0.3 5,-0.3 0.874 97.1 54.1 -38.1 -51.5 -8.9 0.3 2.2 31 31 A A H 3X S+ 0 0 60 -4,-0.6 4,-1.0 1,-0.2 -1,-0.3 0.930 105.6 52.9 -50.0 -52.6 -8.2 -2.1 -0.7 32 32 A E H X4 S+ 0 0 121 -3,-0.6 3,-1.3 -4,-0.5 -1,-0.2 0.936 111.1 45.4 -48.0 -57.2 -4.5 -2.1 0.4 33 33 A A H 3< S+ 0 0 72 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.942 113.8 48.4 -52.3 -53.8 -5.4 -3.1 3.9 34 34 A M H >< S+ 0 0 146 -4,-3.2 2,-1.7 -5,-0.2 3,-0.6 0.613 92.2 90.5 -62.9 -11.6 -7.8 -5.7 2.7 35 35 A A T << + 0 0 78 -3,-1.3 -1,-0.2 -4,-1.0 -3,-0.0 -0.562 57.5 94.5 -87.5 72.6 -5.0 -6.7 0.4 36 36 A K T 3 0 0 174 -2,-1.7 -1,-0.2 0, 0.0 -2,-0.1 0.613 360.0 360.0-125.6 -45.6 -3.5 -9.3 2.8 37 37 A G < 0 0 103 -3,-0.6 -2,-0.1 0, 0.0 -3,-0.0 0.625 360.0 360.0 72.3 360.0 -5.0 -12.6 1.8