==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 28-MAR-01 1IB9 . COMPND 2 MOLECULE: TRYPSIN INHIBITOR II; . SOURCE 2 ORGANISM_SCIENTIFIC: MOMORDICA COCHINCHINENSIS; . AUTHOR M.E.FELIZMENIO-QUIMIO,N.L.DALY,D.J.CRAIK . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2478.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 38.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 52 0, 0.0 6,-0.2 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 129.9 4.5 11.1 2.4 2 2 A G - 0 0 50 32,-0.4 2,-0.3 1,-0.0 6,-0.1 0.122 360.0 -81.5-122.0-124.5 4.6 12.5 5.9 3 3 A S S > S+ 0 0 106 1,-0.1 3,-1.1 4,-0.1 4,-0.1 -0.956 92.5 32.8-150.6 165.2 7.4 12.4 8.6 4 4 A D T 3 S- 0 0 166 -2,-0.3 -1,-0.1 1,-0.3 3,-0.1 0.894 148.2 -11.3 50.0 46.7 8.9 10.2 11.3 5 5 A G T 3 S+ 0 0 50 1,-0.2 2,-1.7 -3,-0.1 -1,-0.3 -0.083 109.3 115.0 123.8 -29.2 8.1 7.1 9.1 6 6 A G < + 0 0 9 -3,-1.1 2,-0.4 -5,-0.1 19,-0.2 -0.549 39.6 144.1 -74.0 87.7 5.9 8.9 6.6 7 7 A V + 0 0 97 -2,-1.7 17,-0.3 17,-1.3 27,-0.1 -0.998 15.5 159.5-130.9 129.4 8.1 8.5 3.6 8 8 A a - 0 0 21 -2,-0.4 3,-0.1 -6,-0.1 15,-0.1 -0.990 30.0-137.2-150.3 140.8 6.8 7.9 0.1 9 9 A P S S- 0 0 103 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 0.158 73.1 -21.7 -70.5-159.8 8.0 8.3 -3.6 10 10 A K - 0 0 153 1,-0.1 2,-0.6 2,-0.1 3,-0.1 -0.173 68.9-139.0 -50.3 138.5 5.7 9.8 -6.3 11 11 A I + 0 0 59 1,-0.1 -1,-0.1 -3,-0.1 3,-0.1 -0.911 60.2 113.2-113.1 114.1 2.0 9.5 -5.4 12 12 A L + 0 0 103 -2,-0.6 2,-0.5 2,-0.1 -1,-0.1 0.030 52.3 102.0-162.6 24.3 -0.5 8.6 -8.1 13 13 A K S S- 0 0 84 -3,-0.1 20,-2.6 9,-0.1 18,-0.0 -0.982 75.3-117.2-118.3 121.5 -1.6 5.2 -6.7 14 14 A K B -A 32 0A 150 -2,-0.5 2,-0.4 18,-0.2 18,-0.3 -0.232 29.0-163.3 -62.8 150.3 -4.9 5.0 -4.9 15 15 A b - 0 0 11 16,-1.3 3,-0.1 1,-0.1 6,-0.1 -1.000 22.4-171.0-138.4 135.8 -5.1 4.1 -1.2 16 16 A R S S+ 0 0 221 -2,-0.4 2,-0.2 1,-0.2 -1,-0.1 0.920 85.3 8.1 -84.8 -57.7 -8.0 3.0 1.0 17 17 A R S > S- 0 0 130 9,-0.1 3,-1.3 14,-0.0 4,-0.3 -0.623 92.3 -93.7-115.3 173.5 -6.0 3.2 4.3 18 18 A D G > S+ 0 0 88 1,-0.3 3,-1.4 -2,-0.2 16,-0.2 0.940 126.1 47.1 -56.3 -52.1 -2.6 4.6 5.0 19 19 A S G 3 S+ 0 0 80 1,-0.3 -1,-0.3 8,-0.1 7,-0.1 0.373 88.6 88.0 -73.6 5.6 -0.8 1.3 4.6 20 20 A D G < S+ 0 0 48 -3,-1.3 -1,-0.3 2,-0.1 -2,-0.2 0.668 77.1 80.2 -76.6 -16.7 -2.7 0.7 1.4 21 21 A c S < S- 0 0 6 -3,-1.4 4,-0.1 -4,-0.3 -6,-0.1 -0.644 91.4-111.2 -88.8 147.0 0.1 2.5 -0.3 22 22 A P S > S+ 0 0 80 0, 0.0 3,-0.8 0, 0.0 -1,-0.1 -0.253 80.9 18.3 -70.7 165.9 3.5 0.6 -1.1 23 23 A G T 3 S- 0 0 72 1,-0.2 -15,-0.1 -15,-0.1 -2,-0.1 -0.251 125.4 -38.0 71.7-160.5 6.6 1.6 0.9 24 24 A A T 3 S+ 0 0 61 -17,-0.3 -17,-1.3 -18,-0.0 -1,-0.2 0.112 103.8 133.8 -86.5 20.3 6.7 3.4 4.1 25 25 A a < - 0 0 11 -3,-0.8 2,-0.2 -19,-0.2 -17,-0.1 -0.030 40.4-163.1 -67.4 170.8 3.8 5.5 2.7 26 26 A I - 0 0 48 8,-1.7 8,-1.7 -7,-0.1 2,-0.5 -0.589 31.3 -88.4-136.6-167.1 0.5 6.5 4.2 27 27 A b B -B 33 0B 25 6,-0.2 6,-0.2 -2,-0.2 -9,-0.1 -0.969 29.0-145.0-126.4 128.1 -2.7 7.8 2.5 28 28 A R > - 0 0 88 4,-2.5 3,-1.0 -2,-0.5 -13,-0.1 -0.228 30.6-108.9 -77.4 170.2 -3.7 11.4 1.6 29 29 A G T 3 S+ 0 0 91 1,-0.2 -1,-0.1 2,-0.1 4,-0.1 0.603 112.2 73.1 -75.9 -12.6 -7.2 12.8 1.8 30 30 A N T 3 S- 0 0 95 2,-0.3 -1,-0.2 3,-0.1 3,-0.1 0.517 118.8-104.1 -79.6 -5.6 -7.3 12.9 -2.0 31 31 A G S < S+ 0 0 27 -3,-1.0 -16,-1.3 1,-0.3 2,-0.3 0.682 89.9 95.0 89.7 21.4 -7.7 9.1 -2.1 32 32 A Y B S-A 14 0A 91 -18,-0.3 -4,-2.5 1,-0.2 -1,-0.3 -0.946 81.9 -68.7-141.1 159.8 -4.0 8.4 -3.1 33 33 A c B B 27 0B 2 -20,-2.6 -6,-0.2 -2,-0.3 -1,-0.2 0.196 360.0 360.0 -40.7 159.8 -0.7 7.6 -1.5 34 34 A G 0 0 0 -8,-1.7 -8,-1.7 -16,-0.2 -32,-0.4 -0.982 360.0 360.0-154.0 360.0 1.2 10.1 0.7