==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 30-MAR-01 1IC9 . COMPND 2 MOLECULE: TH10AOX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.J.OTTESEN,B.IMPERIALI . 29 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2684.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 62.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 123 0, 0.0 2,-0.3 0, 0.0 27,-0.1 0.000 360.0 360.0 360.0 122.9 20.3 23.5 -14.4 2 2 A K - 0 0 81 13,-0.2 2,-0.3 25,-0.1 15,-0.1 -0.994 360.0-135.9-142.5 138.0 24.1 23.9 -15.0 3 3 A Y - 0 0 37 13,-0.8 11,-0.8 -2,-0.3 2,-0.7 -0.722 13.0-152.2 -82.3 133.3 27.2 21.6 -15.3 4 4 A E E +AB 13 27A 68 23,-1.2 23,-1.1 -2,-0.3 2,-0.6 -0.945 28.8 176.7-107.5 98.4 30.2 22.9 -13.3 5 5 A Y E -AB 12 26A 44 7,-1.4 7,-0.9 -2,-0.7 2,-0.5 -0.869 15.7-178.9-122.2 93.2 32.8 21.2 -15.6 6 6 A T E -AB 11 25A 23 -2,-0.6 19,-0.8 19,-0.5 2,-0.7 -0.821 17.5-152.1 -85.5 126.8 36.5 21.9 -14.9 7 7 A I E > S-A 10 0A 70 3,-1.8 3,-2.0 -2,-0.5 2,-1.4 -0.917 82.6 -34.0 -95.7 104.7 38.8 20.1 -17.4 8 8 A X T 3 S- 0 0 98 -2,-0.7 17,-0.1 15,-0.4 -2,-0.1 -0.626 133.1 -33.7 77.0 -90.3 42.0 19.6 -15.2 9 9 A S T 3 S+ 0 0 108 -2,-1.4 2,-0.9 2,-0.0 -1,-0.3 0.215 112.6 116.4-136.1 7.7 41.3 23.0 -13.3 10 10 A Y E < -A 7 0A 159 -3,-2.0 -3,-1.8 2,-0.0 2,-0.2 -0.708 52.5-156.0 -94.3 99.2 39.8 25.0 -16.3 11 11 A T E +A 6 0A 64 -2,-0.9 2,-0.3 -5,-0.2 -5,-0.2 -0.532 20.0 172.8 -82.0 138.6 36.1 25.8 -15.4 12 12 A F E -A 5 0A 89 -7,-0.9 -7,-1.4 -2,-0.2 2,-0.4 -0.975 12.2-167.0-138.4 131.5 33.3 26.6 -18.0 13 13 A R E +A 4 0A 158 -2,-0.3 -9,-0.1 -9,-0.2 -11,-0.0 -0.985 25.7 126.8-129.7 123.1 29.7 27.0 -16.6 14 14 A G - 0 0 26 -11,-0.8 -11,-0.3 -2,-0.4 2,-0.1 -0.604 65.9 -64.0-154.9-153.3 26.6 27.0 -18.9 15 15 A P S S+ 0 0 133 0, 0.0 2,-0.3 0, 0.0 -13,-0.2 -0.199 93.1 82.5-109.6 43.9 22.9 25.3 -19.6 16 16 A G - 0 0 28 -2,-0.1 -13,-0.8 -13,-0.1 13,-0.3 -0.880 51.6-160.2-141.4 159.7 23.9 21.7 -20.4 17 17 A a + 0 0 82 -2,-0.3 2,-0.2 -15,-0.1 11,-0.0 -0.575 29.6 166.9-143.6 79.0 24.9 18.2 -19.0 18 18 A P - 0 0 68 0, 0.0 2,-0.2 0, 0.0 -2,-0.0 -0.546 42.6-100.4 -83.1 161.9 26.8 16.1 -21.8 19 19 A T - 0 0 153 -2,-0.2 2,-0.3 0, 0.0 -2,-0.0 -0.615 47.7-171.7 -78.1 141.2 28.8 12.7 -21.2 20 20 A L - 0 0 62 -2,-0.2 4,-0.2 1,-0.1 3,-0.1 -0.972 28.3 -77.7-140.4 149.5 32.6 13.3 -21.0 21 21 A K > - 0 0 175 -2,-0.3 3,-0.6 1,-0.1 -1,-0.1 0.127 64.0 -82.6 -30.0 150.3 36.0 11.3 -20.8 22 22 A P T 3 S+ 0 0 140 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.404 110.9 38.6 -71.8 146.7 37.1 9.7 -17.2 23 23 A X T 3 S+ 0 0 91 1,-0.3 2,-0.5 -3,-0.1 -15,-0.4 0.631 79.8 120.1 86.1 21.8 38.9 12.1 -14.7 24 24 A I < - 0 0 33 -3,-0.6 2,-1.5 -4,-0.2 -1,-0.3 -0.972 62.8-135.9-108.2 131.5 36.8 15.4 -15.3 25 25 A T E +B 6 0A 99 -19,-0.8 -19,-0.5 -2,-0.5 2,-0.5 -0.357 40.9 165.2 -86.4 62.8 34.9 16.8 -12.2 26 26 A V E -B 5 0A 46 -2,-1.5 2,-0.5 -21,-0.2 -21,-0.2 -0.698 15.3-172.7 -81.2 114.1 31.7 17.4 -14.2 27 27 A R E -B 4 0A 186 -23,-1.1 -23,-1.2 -2,-0.5 2,-0.1 -0.923 16.6-141.4-126.9 95.2 28.9 17.9 -11.6 28 28 A a 0 0 57 -2,-0.5 -25,-0.2 -25,-0.2 -11,-0.1 -0.363 360.0 360.0 -70.9 136.9 25.5 18.1 -13.4 29 29 A E 0 0 183 -13,-0.3 -25,-0.1 -2,-0.1 -26,-0.1 0.741 360.0 360.0 68.4 360.0 22.8 20.7 -12.2