==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 02-APR-01 1ICO . COMPND 2 MOLECULE: TH10BOX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.J.OTTESEN,B.IMPERIALI . 29 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2654.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 65.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 41.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 123 0, 0.0 15,-0.9 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 128.2 26.2 10.3 -17.3 2 2 A K E -A 15 0A 128 13,-0.2 27,-2.1 14,-0.1 2,-0.4 -0.991 360.0-135.7-139.8 127.5 28.9 12.9 -18.4 3 3 A Y E -AB 14 28A 64 11,-1.3 11,-2.4 13,-0.4 2,-0.6 -0.725 11.7-169.7 -85.7 130.1 30.1 16.0 -16.4 4 4 A E E +AB 13 27A 27 23,-2.5 2,-0.5 -2,-0.4 23,-0.5 -0.952 17.7 175.4-114.4 98.3 30.6 19.4 -18.3 5 5 A Y E -AB 12 26A 76 7,-2.4 7,-1.7 -2,-0.6 2,-0.4 -0.964 15.7-154.0-112.1 121.0 32.4 21.5 -15.6 6 6 A T E -AB 11 25A 49 19,-0.5 19,-0.5 -2,-0.5 2,-0.4 -0.832 12.1-173.9-106.9 135.4 33.4 24.9 -16.9 7 7 A I E > -A 10 0A 58 3,-2.3 3,-1.5 -2,-0.4 2,-0.8 -0.940 62.0 -47.0-133.2 98.7 36.4 26.8 -15.3 8 8 A X T 3 S- 0 0 125 -2,-0.4 -2,-0.0 1,-0.3 3,-0.0 -0.619 123.9 -20.9 86.6-104.1 37.0 30.5 -16.6 9 9 A S T 3 S+ 0 0 126 -2,-0.8 2,-0.4 2,-0.0 -1,-0.3 0.260 119.7 92.7-118.7 7.5 36.8 30.4 -20.5 10 10 A Y E < -A 7 0A 156 -3,-1.5 -3,-2.3 2,-0.0 2,-0.6 -0.909 61.1-150.6-116.4 125.7 37.5 26.5 -20.9 11 11 A T E -A 6 0A 58 -2,-0.4 2,-0.6 -5,-0.2 -5,-0.2 -0.864 10.9-164.7 -97.1 116.0 34.7 23.9 -21.0 12 12 A F E +A 5 0A 88 -7,-1.7 -7,-2.4 -2,-0.6 2,-0.4 -0.930 13.9 177.9-105.2 112.9 36.0 20.5 -19.6 13 13 A R E +A 4 0A 181 -2,-0.6 -9,-0.2 -9,-0.2 -2,-0.0 -0.985 20.8 111.0-127.3 119.1 33.5 17.7 -20.7 14 14 A G E -A 3 0A 22 -11,-2.4 -11,-1.3 -2,-0.4 2,-0.1 -0.841 60.7 -48.3-164.4-163.1 34.0 14.0 -19.8 15 15 A P E S+A 2 0A 114 0, 0.0 -13,-0.2 0, 0.0 13,-0.0 -0.470 87.1 52.9 -87.5 161.5 32.6 10.9 -17.7 16 16 A G - 0 0 44 -15,-0.9 -13,-0.4 -2,-0.1 -2,-0.1 0.651 67.2-129.7 88.5 118.5 31.7 10.8 -13.9 17 17 A a + 0 0 56 -15,-0.1 -1,-0.1 11,-0.0 11,-0.1 -0.743 37.6 161.7-100.7 84.5 29.3 13.3 -12.2 18 18 A P - 0 0 81 0, 0.0 2,-0.3 0, 0.0 8,-0.1 -0.313 40.7-104.8 -81.9 176.7 30.8 15.0 -8.9 19 19 A T - 0 0 139 -2,-0.1 2,-0.2 6,-0.0 6,-0.1 -0.735 37.6-139.8 -99.0 157.5 29.6 18.3 -7.2 20 20 A V - 0 0 45 -2,-0.3 3,-0.1 4,-0.1 5,-0.0 -0.734 9.9-107.2-123.8 159.7 31.7 21.6 -7.6 21 21 A K > - 0 0 140 -2,-0.2 3,-0.7 1,-0.1 2,-0.1 -0.362 58.5 -69.9 -77.8 164.2 33.0 24.7 -5.5 22 22 A P T 3 S+ 0 0 131 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 -0.396 124.7 32.7 -63.9 129.0 31.5 28.4 -6.0 23 23 A X T 3 S+ 0 0 83 1,-0.3 2,-0.3 -2,-0.1 -15,-0.1 -0.624 107.7 73.3 120.6 -66.9 32.7 29.7 -9.4 24 24 A V < - 0 0 12 -3,-0.7 2,-0.4 -2,-0.2 -1,-0.3 -0.622 63.3-171.3 -78.1 138.4 32.7 26.3 -11.3 25 25 A T E -B 6 0A 107 -19,-0.5 -19,-0.5 -2,-0.3 -6,-0.0 -0.917 11.4-149.7-142.6 108.3 29.1 25.0 -12.1 26 26 A I E -B 5 0A 51 -2,-0.4 2,-0.3 -21,-0.2 -21,-0.2 -0.168 6.9-155.8 -71.6 160.4 28.8 21.4 -13.4 27 27 A R E -B 4 0A 158 -23,-0.5 -23,-2.5 -25,-0.0 2,-0.6 -0.929 2.7-159.8-141.8 120.0 26.2 19.8 -15.8 28 28 A a E B 3 0A 62 -2,-0.3 -25,-0.2 -25,-0.2 -11,-0.0 -0.905 360.0 360.0 -97.3 115.1 25.6 16.1 -15.7 29 29 A E 0 0 150 -27,-2.1 -1,-0.2 -2,-0.6 -26,-0.1 0.943 360.0 360.0 -87.9 360.0 24.0 15.3 -19.1