==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRUS 22-JAN-98 1IFP . COMPND 2 MOLECULE: MAJOR COAT PROTEIN ASSEMBLY; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS PHAGE PF3; . AUTHOR L.C.WELSH,M.F.SYMMONS,R.N.PERHAM,D.A.MARVIN . 44 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4321.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50113.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 27.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 37 84.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 183 0, 0.0 4,-1.2 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 178.7 1.5 -27.5 40.9 2 2 A Q H >> + 0 0 128 1,-0.2 4,-1.4 2,-0.2 5,-0.6 0.878 360.0 74.7 -57.6 -34.4 1.3 -29.9 37.9 3 3 A S H >5S+ 0 0 66 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.907 96.5 46.0 -42.2 -56.4 -2.4 -29.2 38.3 4 4 A V H >5S+ 0 0 84 -3,-0.4 4,-1.6 2,-0.2 5,-0.2 0.941 116.3 44.4 -54.2 -57.2 -1.8 -25.7 36.8 5 5 A I H >X5S+ 0 0 100 -4,-1.2 4,-2.5 1,-0.2 3,-1.6 0.933 114.0 41.1 -58.8 -67.5 0.3 -26.9 33.9 6 6 A T H 3X5S+ 0 0 82 -4,-1.4 4,-1.7 1,-0.3 -1,-0.2 0.795 121.5 48.2 -54.0 -29.1 -1.4 -30.0 32.4 7 7 A D H 3< S+ 0 0 126 -3,-0.6 4,-2.9 -4,-0.3 5,-0.3 0.826 107.4 63.1 -90.2 -49.0 -7.2 -25.7 27.1 12 12 A L H X S+ 0 0 117 -4,-2.2 4,-0.6 1,-0.2 -2,-0.2 0.780 112.9 37.9 -49.8 -32.0 -4.3 -24.3 25.1 13 13 A T H >X S+ 0 0 81 -4,-2.2 3,-1.2 2,-0.2 4,-1.2 0.936 113.4 55.5 -81.5 -53.9 -4.7 -27.1 22.6 14 14 A A H 3X S+ 0 0 49 -4,-0.6 4,-0.8 -5,-0.4 -2,-0.2 0.806 108.7 49.4 -48.8 -36.9 -8.6 -27.2 22.8 15 15 A V H 3X S+ 0 0 65 -4,-2.9 4,-2.0 2,-0.2 -1,-0.3 0.809 99.0 67.2 -75.7 -28.2 -8.6 -23.5 21.8 16 16 A Q H XX S+ 0 0 121 -3,-1.2 4,-2.7 -4,-0.6 3,-0.5 0.973 96.7 53.6 -52.1 -58.0 -6.2 -24.0 18.9 17 17 A A H 3X S+ 0 0 55 -4,-1.2 4,-2.6 1,-0.3 -1,-0.2 0.868 108.8 51.7 -46.4 -43.0 -8.8 -26.0 17.0 18 18 A D H 3X S+ 0 0 97 -4,-0.8 4,-1.7 2,-0.2 -1,-0.3 0.919 110.4 46.1 -62.0 -48.7 -11.2 -23.2 17.5 19 19 A I H XX S+ 0 0 115 -4,-2.0 4,-2.4 -3,-0.5 3,-0.6 0.978 117.0 43.9 -56.2 -58.6 -8.8 -20.6 16.1 20 20 A T H 3X S+ 0 0 97 -4,-2.7 4,-2.2 1,-0.3 -1,-0.2 0.810 109.3 56.3 -57.5 -38.3 -7.8 -22.7 13.1 21 21 A T H 3X S+ 0 0 100 -4,-2.6 4,-1.4 -5,-0.4 -1,-0.3 0.869 110.0 47.2 -64.2 -35.9 -11.4 -23.6 12.4 22 22 A I H X S+ 0 0 111 -4,-1.8 3,-2.2 1,-0.2 4,-0.7 0.933 105.6 59.3 -66.5 -45.7 -12.4 -16.8 6.5 27 27 A I H >X S+ 0 0 112 -4,-2.6 4,-2.5 1,-0.3 3,-1.4 0.852 90.4 67.8 -54.0 -35.3 -9.9 -18.0 3.8 28 28 A V H 3X S+ 0 0 94 -4,-1.7 4,-0.8 1,-0.3 -1,-0.3 0.795 99.4 55.1 -56.8 -22.9 -12.7 -19.4 1.6 29 29 A L H <> S+ 0 0 106 -3,-2.2 4,-1.5 -4,-0.4 -1,-0.3 0.791 105.1 49.2 -74.7 -37.2 -13.6 -15.7 1.2 30 30 A A H XX S+ 0 0 56 -3,-1.4 4,-1.9 -4,-0.7 3,-1.1 0.978 108.6 54.4 -66.5 -50.8 -10.1 -14.8 0.0 31 31 A A H 3< S+ 0 0 66 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.756 112.9 43.6 -49.6 -34.1 -10.5 -17.7 -2.4 32 32 A V H >X S+ 0 0 83 -4,-0.8 4,-2.1 -5,-0.3 3,-0.6 0.709 102.2 63.3 -87.6 -21.4 -13.7 -16.1 -3.6 33 33 A V H S+ 0 0 34 -3,-0.6 4,-1.0 -5,-0.2 3,-0.5 0.909 110.8 38.9 -78.0 -61.9 -13.1 -15.6 -8.0 36 36 A I H 3X S+ 0 0 120 -4,-2.1 4,-0.6 1,-0.2 -2,-0.2 0.650 122.7 44.0 -58.4 -31.8 -14.9 -12.2 -8.5 37 37 A R H 3X S+ 0 0 150 -4,-1.6 4,-1.2 -5,-0.2 -1,-0.2 0.794 101.2 57.2 -92.0 -29.5 -11.7 -10.4 -9.5 38 38 A W H X S+ 0 0 110 -4,-0.6 3,-1.6 1,-0.2 4,-0.9 0.942 105.9 56.5 -55.6 -50.8 -12.9 -8.6 -14.4 41 41 A A H >< S+ 0 0 53 -4,-1.2 3,-0.8 1,-0.3 -1,-0.2 0.895 92.7 68.1 -45.5 -49.5 -9.4 -8.6 -15.7 42 42 A Q H 3< S+ 0 0 157 -4,-1.2 -1,-0.3 1,-0.3 -2,-0.2 0.674 100.0 50.5 -48.7 -29.4 -10.2 -11.1 -18.5 43 43 A F H << 0 0 171 -3,-1.6 -1,-0.3 -4,-0.6 -2,-0.2 0.914 360.0 360.0 -72.6 -55.0 -12.3 -8.4 -20.3 44 44 A F << 0 0 249 -4,-0.9 0, 0.0 -3,-0.8 0, 0.0 -0.084 360.0 360.0 -72.0 360.0 -10.0 -5.5 -20.4